Phosphorus... Essential for Life

Dr. Mark D. Stauffer

President, Potash & Phosphate Institute of Canada Senior Vice President, Potash & Phosphate Institute Phosphates are a vital ingredient in the diets of all living things...

P

 is the second most abundant mineral nutrient in the human body

- 80% of P in humans is in bones & teeth accounting for 20% of the mineral ash & 1% of total body weight
- The remainder is widely distributed throughout the body, in combination with fats, proteins and salts in every cell

Phosphorus is of universal importance to every living cell...

is incorporated into...

- Nucleic acids (DNA, RNA, genes, chromosomes)
- Proteins
- Lipids
- Sugars
- Enzymes
- Energy rich P compounds (ATP, ADP)

is critical to basic plant physiology:

- Energy storage & transfer for every biological process
 - photosynthesis
 - respiration
 - cell division, development, enlargement, gene transfer, reproduction

"Without phosphorus, there is no cell, no plant, and no grain...

Without adequate phosphorus, there is a lot of hunger..."

Vigorous crop (Shoot/Root) growth
Improved resource utilization

• water, nutrients

positive environmental implications

Better resistance to stress

disease, pest, moisture, temperature

✓ Earlier maturity

- good grain & fruit development
- better crop quality, yield

LOWERS FARMER RISK & RAISES PROFIT POTENTIAL *is mobile in the plant…linked to metabolic processes…* & *is concentrated in the most active areas of growth*

(Jacobsen et al. 1992)

Agronomic characteristics of P deficiency

... darkened leaves

deficiency reflected in poor development at all stages...

stunted growth

 reduced leaf number, expansion & surface area

Impact on plant roots & tillers (wheat)

N	P_2O_5	WUE	Increase
kg/ha		kg/cm H ₂ O	in WUE, %
0	0	30	
0	45	38	27
0	90	40	33
40	0	26	-13
40	45	42	40
40	90	49	63

Impact on crop maturity (barley)

(Westco-Alberta, Canada)

Impact on yield & cost of production

Schlegel, Dhuyvetter, and Havlin, 1996

 An actively growing crop can use up all of the P in soil solution twice a day.

 A soil's ability to <u>maintain</u> a plant-available P supply is the important factor.

The Phosphorus Cycle

Input

Loss

Risk of environmental loss?

(Sharpley et al. 1993)

Phosphorus in the Watershed

Sharpley, Gburek, USDA-ARS; Beegle, Penn State University

Soil Test P Distribution

Sharpley, Gburek, USDA-ARS; Beegle, Penn State University

Vulnerability to P Loss

Sharpley, Gburek, USDA-ARS; Beegle, Penn State University

What Determines Phosphorus Fertilizer Need?

Population, Land resources/fertility, Historic nutrient use patterns, Cropping diversity, Export versus domestic goals, Government policy, Current Economy...

Indigenous Phosphorus supply - the net effect?

Soybean yields – US/Brazil

AgriStats, NASS

Soybean growth – US/Brazil

AgriStats, ANDA, NASS

Soybean P removal – US/Brazil

AgriStats

Opportunities...

- World food demand
- Favorable climate
- Lower land price
- Low production cost
- High yields with fertility correction
- Improving infrastructure
- Political/economical stability

EC Joint Research Centre, 2002

Smallholder farms - Sustainability of Slash & Burn Systems – Oxisol, Manaus, Brazil

- 8 years of cultivation after initial slash & burn
- 17 consecutive crops

CROP Rice Soybean Corn Cowpea TREATMENT N & P Κ Lime & Cu S **B** & Zn Mn Mg

$\begin{array}{c} \leftarrow 1 \rightarrow \leftarrow 2 \rightarrow \leftarrow 3 \rightarrow \leftarrow 4 \rightarrow \leftarrow 5 \rightarrow \leftarrow 6 \rightarrow \leftarrow 7 \rightarrow \leftarrow 8 \rightarrow \\ \hline \end{array}$

Cravo and Smith, 1997

Year After Burning

Soil fertility decay pattern – No fertilizer

Months till 50% Decrease Increase

Org C	134	-
Ca	23	-
Mg	15	-
K	5	-
Al	-	33
рН	-	29
Zn	21	-

Cravo and Smith, 1997

NPK plus Lime

Cravo and Smith, 1997

Cravo and Smith, 1997

Cerrado soil has poor fertility & can't produce without fertilizers

Dirceu Broch, Fundação MS

Grain production gaps

Compiled from Lopes, 1996 and Yamada, 2003

Soybean P response in Cerrado soil

Broadcast & Incorporated, kg P₂O₅/ha

Source: Fundação MT

TOP FARMER GROUPS: TO DEVELOP AND TRANSFER TECHNOLOGY

Mapa do Site

SEARCH REGISTER STORE

Quem Somos

1-Missao

- 2-Historia do PPI/PPIC 3-Empresas
- Filiadas 4-Equipe Regional
- 5-Equipe Mundial
- 6-Localizacao da POTAFOS
- 7-Mapa do Site

Profile

1-Estatisticas gerais da agricultura brasileira e do setor de fertilizantes

DRIS

1-Sistema de diagnostico nutricional para as culturas de algodao-cafecitros-milho-soja e eucalipto

Eventos

What's New

Nova edicao do Informacoes Agronomicas - Dezembro de 2002

Seja o doutor do seu sorgo

01) Simposio sobre Fosforo na Agricultura Brasileira

02) IV Simposio sobre Rotacao Soja/Milho no Plantio Direto

IMAGE GALLERY

Regional Update

Rua Alfredo Guedes, 1949 Edificio Rácz Center, Sala 701 Caixa Postal 400 13400-970 Piracicaba-SP Brasil Telefone: 55-19-3433-3254 Fax: 55-19-3433-3254 Email: yamada@potafos.org Dr. T. Yamada

November 2002 - Agricultural Sector Update The new planting season is bringing signs of another bumper year, with the production of 108 million tons of grains or 11.7% higher than last year. >more

Printable Version

Past Updates

SORGO É BOA OPÇÃO PARA SUBSTITUIR MILHO

O sorgo é o quinto cereal mais importante do mundo, após trigo, milho, arroz e cevada, apresentando grande potencial para produção de grãos, forragem e álcool. A produção de sorgo na América do Norte, América do Sul, Europa e Austrália se destina principalmente à alimentação animal, ao passo que na Ásia, África, Rússia, China e América Central o grão é importante como alimento humano básico. Nos países industrializados cultiva-se sobretudo como planta forrageira. No Brasil, o sorgo tem mostrado grande potencial de produção, não somente por sua comprovada capacidade

de suportar estresses ambientais mas, também, por ser mecanizável do plantio à colheita, por apresentar

Challenges

- Potential for agricultural expansion is great
- Projections for future production are bold
- How sustainable is this production?
- Maximum economic yield is always the desired goal
- Adequate P is a crucial part of the yield equation responsible for reaching this goal

P consumption – world comparisons (kg per arable ha)

AgriStats

Soybean growth – US/Brazil

AgriStats, ANDA, NASS

Best management practices

(Corn results from several U.S. state's)

