Best Management Practices for Efficient Fertilization of Soybean in Lowland Soils

Nathan Slaton (<u>nslaton@uark.edu</u>)

7 - 8 May 2013 IPNI Brazil IV Regional Symposium on Best Practices for Efficient Use of Fertilizers

DIVISION OF AGRICULTURE

RESEARCH & EXTENSION

University of Arkansas System

Discussion outline

- Arkansas USA production system traits
- Keys to successful soybean production on poorly drained soils
- Molybdenum, boron & pH
- Nodulation & N fixation
- Lime in the rice:soybean rotation
- P & K management
- Chloride management
- Summary

Arkansas Soybean Production

- 1.3 million ha
- 80-85% irrigated
 - Furrow irrigated
 - Flood irrigated
 - Center-pivot irrigated
- Most common rotation crop is flood-irrigated rice on poorly drained soils
- Soils <10 60% clay content with 1.0-2.5% organic matter
- Production systems
 - Early season (April)
 - Full season (May)
 - Double-crop following wheat (June planting)

Furrow-irrigated soybean on raised beds

Keys to successful production of soybean following rice

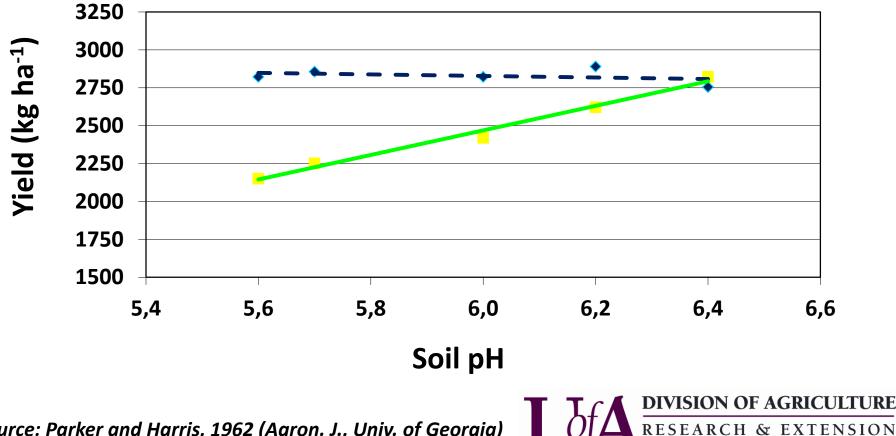
- Need optimal soil pH
 - Lime application to acidic soils
- Surface drainage
 - Beds and/or drain furrows
- Irrigation and/or timely rainfall
 - 80-85% ground water
 - 15-20% surface water
- Variety selection
- Fertility
 - Inoculate and apply Mo
 - P & K management
 - Micronutrients (Boron)
 - Chloride management

Boron deficiency of soybean near irrigation inlet following lime application

Observations on the production of soybean following rice (Arkansas, USA)

- Neutral to Alkaline soils
 - Infrequent response to P fertilization even when soil test P is Very Low
 - No problem with nodulation & N fixation
 - Some problems with micronutrient deficiencies
 - Boron deficiency is most common

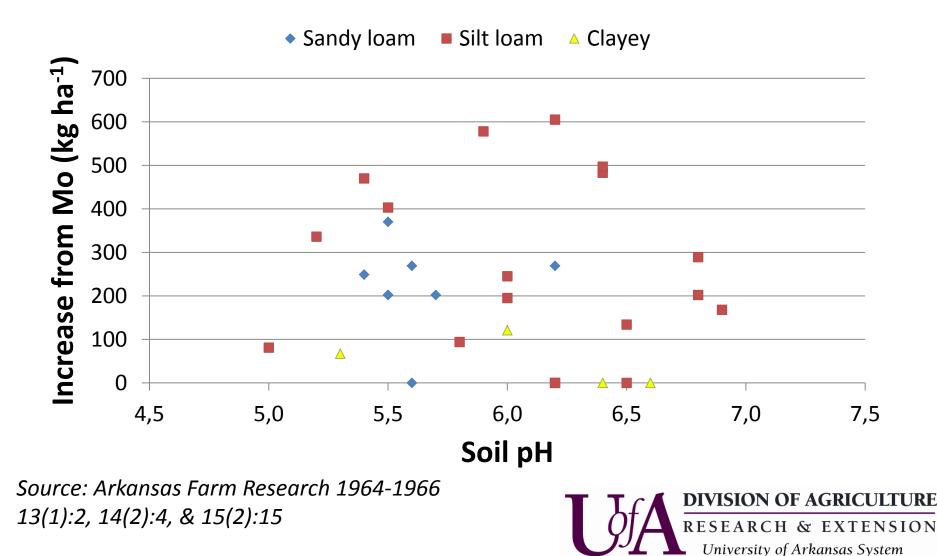
• Acidic soils


- Yields and vigor
 decrease rapidly when
 pH_{water} <5.5 on silt loam
 soils
 - Less influence of pH on clayey alluvial soils
- Positive response to molybdenum
- Benefit from P fertilization if pH is not too low!

ENSION

University of Arkansas System

Soybean response to molybdenum and soil pH


 Molybdenum No Molybednum

University of Arkansas System

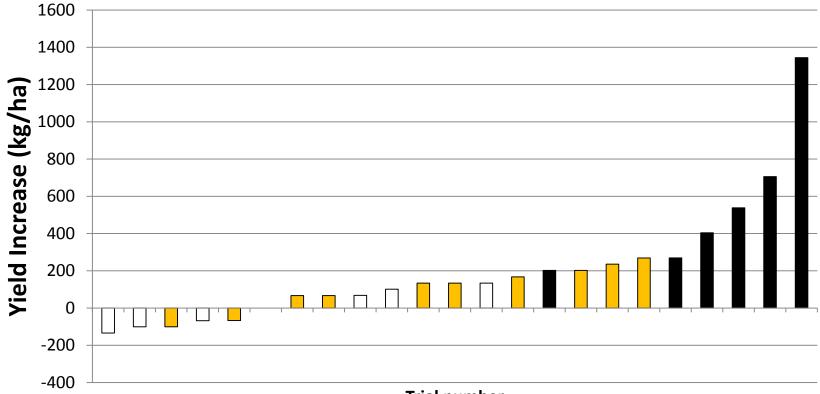
Source: Parker and Harris, 1962 (Agron. J., Univ. of Georgia)

Yield increase from molybdenum

Lime application for rice-soybean rotation

- Use target pH of 6.0-6.2
- Monitor Zn status of soil
- Most common lime problems
 - Non-uniform distribution
 - Spatial variability in field

- Lime application
 - Grid soil sample & use variable rate application
 - Apply lime rate in two separate applications following rice in the rotation
 - To reduce 'streaking' or enhance uniform application
 - Minimize chance of increasing pH too much


DIVISION OF AGRICULTURE

University of Arkansas System

H & EXTENSION

 Soil sample ~1 year after first lime application to monitor pH change before making second application

Boron deficiency of irrigated soybean

Trial number

Black bars represent sites with pH > 7.0 & statistically significant increase Orange bars represent sites with pH > 7.0 & no significant difference White bars represent sites with pH < 7.0 & no significant difference

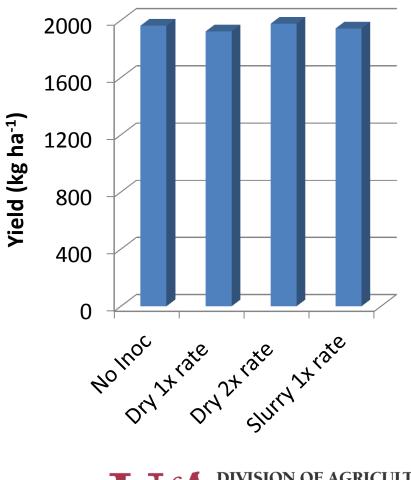
Nutrient requirement of soybean

Nutrient	Seed Content	Total Uptake		
	4700 kg ha ⁻¹ yield			
Ν	330	430		
P_2O_5	71	94		
K ₂ O	121	200		
S	16	36		

Source: http://extension.agron.iastate.edu/soybean/production_soilfert.html

Inoculation of soybean seed

- When to Inoculate soybean seed
 - Sandy soils every year (Nebraska)
 - Inoculate if >3 to 5 years since last soybean crop
 - Add inoculum regularly on acid soils
 - Recently precision-graded soils
 - Previously flooded fields (Wisconsin)


Recommendations from multiple land-grant universities in the USA. From multiple sources.

Need for inoculation with Bradyrhizobium following rice?

- Stuttgart, AR trial
- Rotation
 - Soybean (1961) fb 2
 years of rice (1962-63) fb
 soybean (1964)
- Dewitt silt loam, 6.8 pH
- No significant differences in seed yield, nodule number, or nodule weight

Arkansas Farm Research 15(6):12(Caviness, 1966)

University of Arkansas System

Factors influencing soybean nodulation

- Waterlogging or anoxic soil conditions are known to reduce N₂ fixation in soybean
 - Amarante and Sodek (2006)
 - Becanamwo and Purcell (1999)
- P nutrition plays a prominent role in nodulation (de Mooy and Pesek, 1966; Agron J 56:275-280)

- The effects of flooding/anoxic conditions, acidity, and organic acids on rhizobia may be additive (Osa-Afiana and Alexander, 1979; Agron J. 43:925-930)
- Prolonged anoxic conditions appear to be more damaging to soybean on acidic soils (general observation in Arkansas)

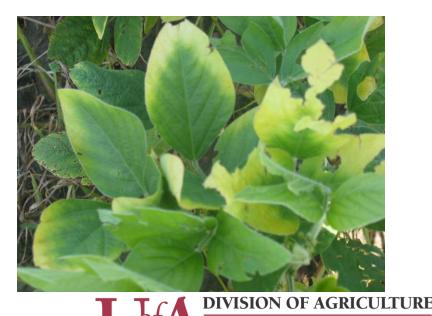
NSION

University of Arkansas System

Poultry litter vs commercial fertilizer yield comparison (PK responsive sites)

Treatment	Average of 8 Trials				
	Low Rate	High Rate			
	Yield (k	⟨g ha⁻¹)			
No Fertilizer	40	32			
N only	4166	3965			
PK Fertilizer	4368	4637			
NPK Fertilizer	4368	4435			
Poultry Litter	4502	4704			
LSD0.05	202 (compare Low vs High)				
LSD0.05	134 (compare to UTC)				

Source: Slaton et al. (2013, Agronomy Journal)


Is P or K more limiting to soybean yield?

Phosphorus

- Francisco (2013, Better Crops) showed both P & K limited soybean yield in Brazil and provided striking photos of positive soybean response to P
- Below (Univ. of Illinois) suggested that P is a major yield limitation to soybean in Illinois/Midwest
 - <u>http://cropphysiology.cropsci.</u> <u>illinois.edu/documents/2012</u> <u>%20Six%20Secrets%20of%20</u> <u>Soybean%20Success%20repo</u> <u>rt.pdf</u>

Potassium

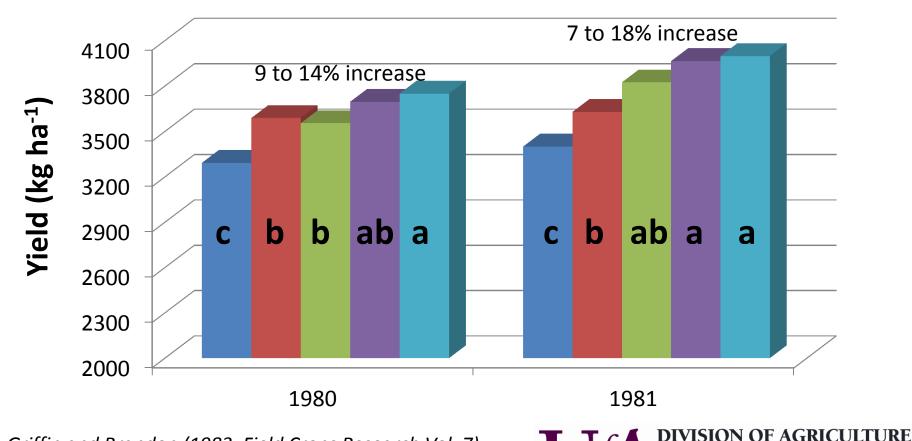
- Soybean more responsive to K than P fertilization (Jones et al., 1977)
- Generalization is true in Arkansas

RESEARCH & EXTENSION University of Arkansas System

Rice lodging & phosphorus CL151 Variety (lodging prone variety)

P-fertilizer	PTRS	-2011†	PTRS-2012‡		
rate	Lodging	Grain Yield	Lodging	Grain Yield	
kg P₂O₅ ha⁻¹	% lodged	kg ha⁻¹	% lodged	kg ha⁻¹	
0	20	9425	1	9778	
45 – 50	42	9022	15	9173	
90 - 100	59	9122	9	8921	
135			29	9374	

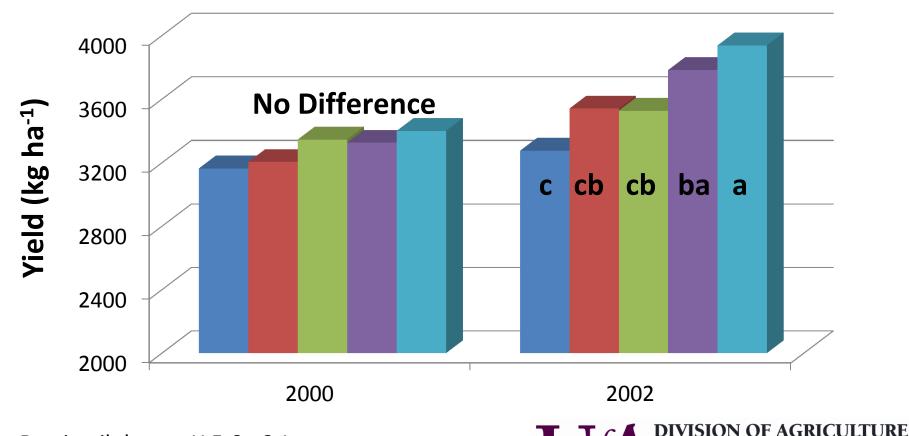
Primarily a problem with lodging prone rice varieties/hybrids


2011: Calloway silt loam w/ soil test P (Mehlich-3) 6 ppm & soil pH 6.5 2012: Calloway silt loam w/ soil test P (Mehlich-3) 18 ppm & soil pH 7.4.

Unpublished data (Slaton)

Soybean response to P following flood-irrigated rice in rotation

0 27 54 81 108 kg P2O5/ha

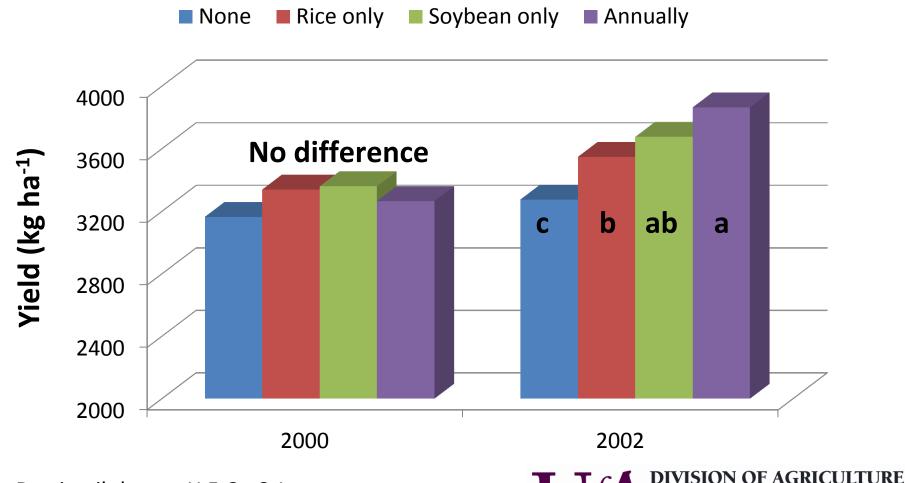

RESEARCH & EXTENSION

University of Arkansas System

Griffin and Brandon (1983, Field Crops Research Vol. 7) Crowley silt loam, pH 6.8-7.1

Soybean response to P Following rice P rate effect

■ 0 ■ 22 ■ 44 ■ 88 ■ 132 kg P2O5/ha

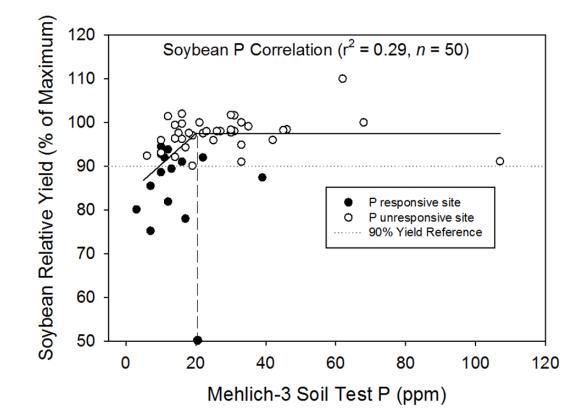


RESEARCH & EXTENSION

University of Arkansas System

Dewitt silt loam pH 5.6 - 6.1 Averaged across application frequency

Soybean response to P following rice Frequency of P application


Dewitt silt loam pH 5.6 - 6.1 Averaged across application rates

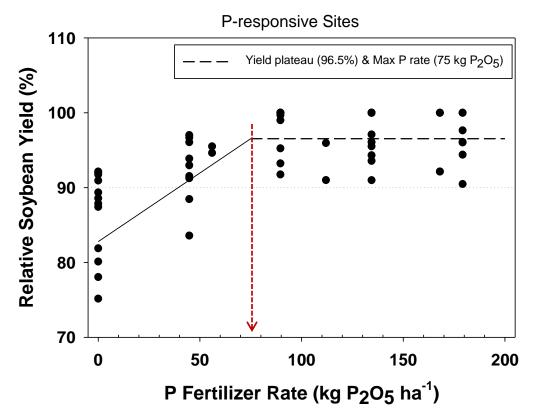
University of Arkansas System

RESEARCH & EXTENSION

Soybean and P fertilization

 Arkansas research indicates that the critical Mehlich-3 soil test P value for soybean production is ~20 ppm (95% CI 13-27 ppm).

Soybean response to phosphorus


Soil Test	Soil	Total		P Responsive Sites			
Level	Test P	Sites	Responsive	No P Fertilized		Yield Loss	
	ppm	#	%		kg ha ⁻¹ -		%
Very Low	≤15	18	56	3494	3965	471	12
Low	16-25	14	21	3562	4099	537	13
Medium	26-35	11	0				
Optimum	36-50	4	25†	3629	4166	537	13
Above Optimum	≥51	3	0				

Summary of soybean P correlation calibration research Soil test P method is Mehlich-3 10 cm soil sample depth

Soybean and P fertilization

 Arkansas research suggests that on P responsive soils, soybean yield does not benefit from fertilizer rates > 75 kg P₂O₅ ha⁻¹

Soybean - P and K fertilization

Treatment Comparison	Treatment Comparison	Yield	P-value
		kg ha⁻¹	sdf contrast
1	No P or K vs	4207 b	0.0477
T	K only	4435 a	0.0477
2	K only vs	4435 a	0.0010
2	P only	4086 b	0.0010
3	K only vs	4435 a	0.4517
3	Both P and K	4502 a	0.4517
4	No P or K vs	4207 a	0.2422
	P only	4086 a	0.2422

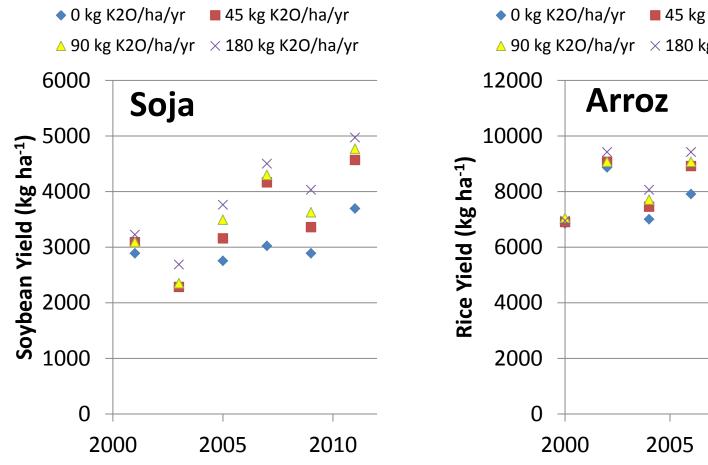
DIVISION OF AGRICULTURE

RESEARCH & EXTENSION

University of Arkansas System

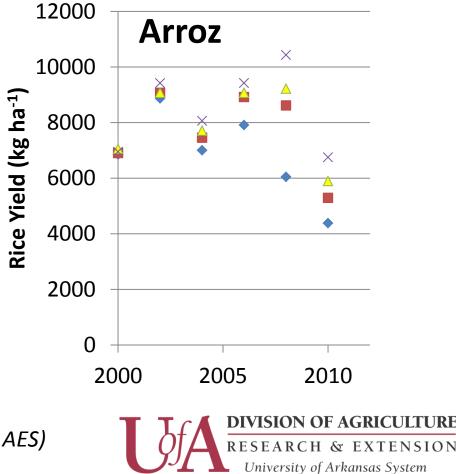
Calhoun silt loam

pH = 7.3 , Mehlich-3 P = 10 ppm& K = 71 ppm


Soybean response to potassium

Soil Test	Soil Test	Total		K Responsive Sites			
Level	К	Sites	Responsive	No K Fertilized		Yield Loss	
	ppm	#	%		kg ha ⁻¹		%
Very Low	≤60	4	100%	1949	3091	1142	37
Low	61-90	13	92%	2957	4032	1075	27
Medium	91-130	22	41%	3427	3965	538	14
Optimum	131-175	6	0				
Above Optimum	≥176	2	0				

Summary of soybean P correlation calibration research Mehlich-3 soil test 10 cm soil sample depth



Yield response to annual potassium rate rice:soybean rotation

Source: N.A. Slaton (Calhoun silt loam, Pine Tree AES)

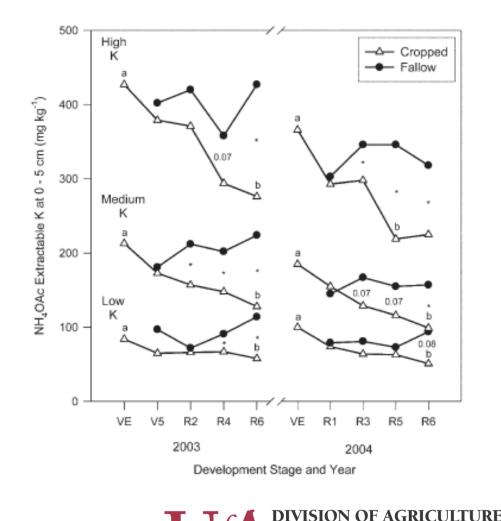
45 kg K2O/ha/yr ▲ 90 kg K2O/ha/yr × 180 kg K2O/ha/yr

K Fertilization Decisions

	Rice				Soybean			
Mehlich-3 Soil Test	Fertilizer rate, kg K ₂ O ha ⁻¹				Fertilizer rate, kg K ₂ O ha ⁻¹			
К	0	45	90		0	45	90	
ppm		% Yield Loss			% Yield Loss			
45	22	16	11		32	23	15	
60	17	12	7		27	18	11	
75	13	9	5		21	14	8	
90	10	6			17	10	6	
105	7				12	7		
120					9	5		
135					5			

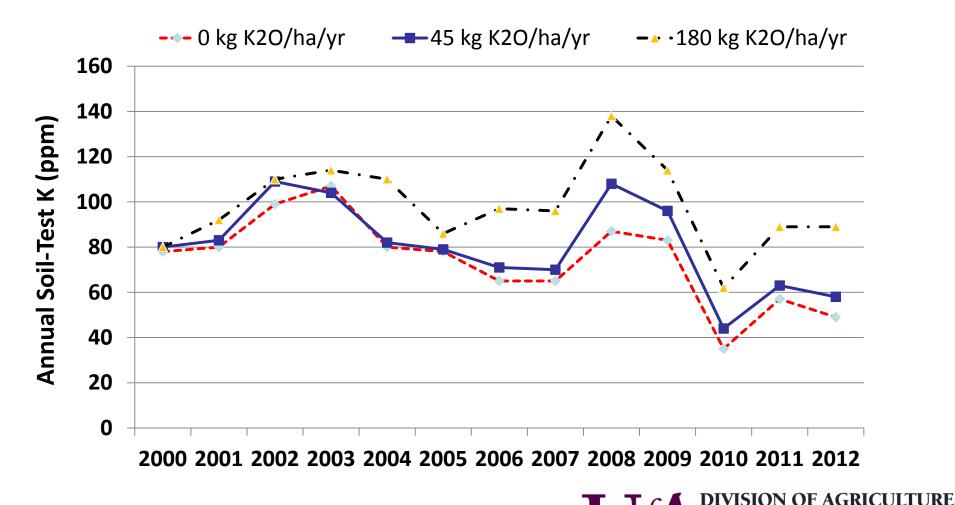
From Slaton et al. (2011) UACES Fact Sheet 2165

Soil testing issues in rice:soybean rotation


- Soil sample depth
 - What soil sample depth is most accurate?
- Field variability
 - Spatial accounted for by grid sample collection
 - Temporal Significant problem for K

- Soil test accuracy
 - How much yield variation (e.g., r²) is accounted for by the soil test availability index?
 - Potassium
 - 75% (Arkansas)
 - 26 (dry) 56% (moist, lowa)
 - Phosphorus
 - 30% (Arkansas)
 - 60% (lowa)

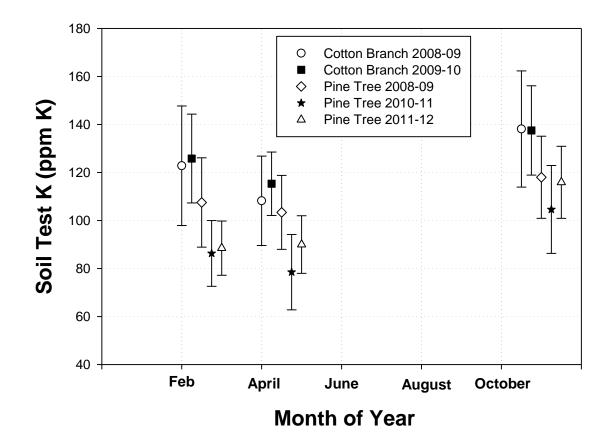
What is best soil sample depth for Soybean?


- Fernandez et al. (2008) reported that 0-10 cm depth provided better estimates of available K than 0-20 cm depth on a poorly drained soil and K (0-5 cm) was very dynamic (i.e., change during season).
 - Soil Sci Soc. Am. J.
 72:1085-1095.

EXTENSION

University of Arkansas System

Annual Soil Test K Fluctuation Environmental Influences

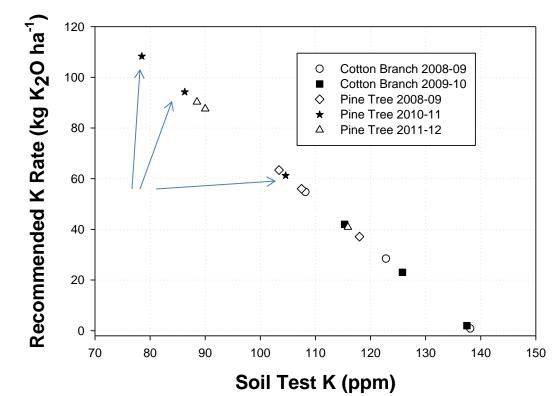

RESEAR

CH & EXTENSION

University of Arkansas System

Source: Slaton, Calhoun silt loam at Pine Tree 2000-2012

Temporal variation in soil test K



Each point represents the mean of 12-24 composite samples (4-5 cores/sample) collected from a ~0.25 ha research area.

How does soil sample time influence soybean fertilizer recommendations?

Using the VRT equation for K fertilization of soybean within each of the five site-years the recommended K₂O rates varied by 54, 40, 26, 58 & 49 kg K₂O ha⁻¹

Each point represents the mean of 12-24 composite samples (4-5 cores/sample) collected from a ~0.25 ha research area.

RESEARCH & EXTENSION University of Arkansas System

Benefits of foliar-applied biostimulents (Arkansas 2012)?

Product	No Fertilizer	0-60-80	Average			
	kg ha ⁻¹					
None (B only)	4234	4771	4502			
Perc Plus	4032	4435	4234			
Foliar Blend	4301	4502	4368			
SoyAstim-27	4032	4637	4368			
BioForge	4234	4704	4435			
Average	4166 b					
LSD0.10	Interaction Fertilizer Rate Mai	Product effect NS (0.3678)				

Armor 53-R15; Fertilizer applied as MES10 (12-40-0-10S) and Muriate of Potash Products applied at V4 fb R1-2 stages; Perc Plus (530 mL fb 530 mL ha⁻¹); Foliar Blend (1060 mL fb 1060 mL ha⁻¹); BioForge 265 mL fb Sugar Mover 1060 mL ha⁻¹); & Pro Team SoyAstim-27 1060 mL fb 1060 mL ha⁻¹) T JfA DIVISION OF AGRICULTURE RESEARCH & EXTENSION

Iniversity of Arkansas System

Chloride management (chloride from irrigation water)

- Can upland crop fertilizer recommendations be used for irrigated crop production?
 - Decisions should always be guided by good research
 - Soil pH dependent
 - Alkaline and acid soils present different challenges for different crops & must be addressed by research.
 - Micronutrient issues:
 - Toxicity or deficiency??
 - If soil pH and mineralogy are similar, then good chance that recommendations are transferable.

- Can upland crop fertilizer recommendations be used for irrigated crop production?
 - Potassium
 - Many published 'critical soil test K values' are comparable despite different crops, rotation, weather, soil and irrigation practices
 - Must address the problems of temporal variability and accuracy of soil test recommendations

DIVISION OF AGRICULTURE

University of Arkansas System

CH & EXTENSION

- Can upland crop fertilizer recommendations be used for irrigated crop production?
 - Phosphorus
 - No or maybe, prolonged flooding changes soil P chemistry and influences the availability of P to the subsequent crop.
 - Several studies have shown P availability is different following flooded rice production

- What information do you need to make sound fertilization decisions? Knowledge of
 - Soil test method
 - Fertilization philosophy
 - Yield response curve (correlation & calibration curves)
 - Frequency of response within each soil test level
 - Magnitude of response
 - Keep good records of soil test results

Thank You

- Special thanks to:
 - Luis Prochnow & IPNI staff
 - Nelson Horowitz
 - Leandro Souza da Silva

