The Role of Nitrogen and Sulfur on Plant Disease Incidence and Resistance

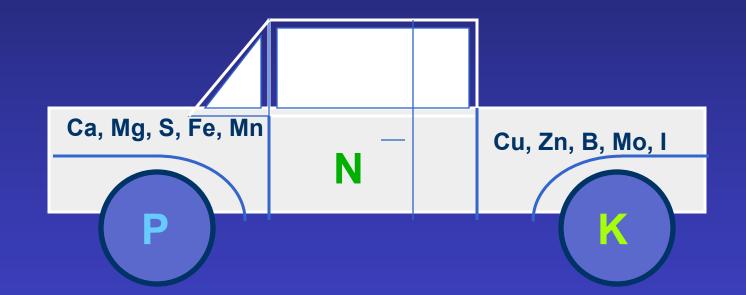
Don M. Huber

Botany & Plant Pathology Department Purdue University, West Lafayette, IN USA

SIMPÓSIO SOBRE RELAÇÕES ENTRE NUTRIÇÃO MINERAL E INCIDÊNCIA DE DOENÇAS DE PLANTAS

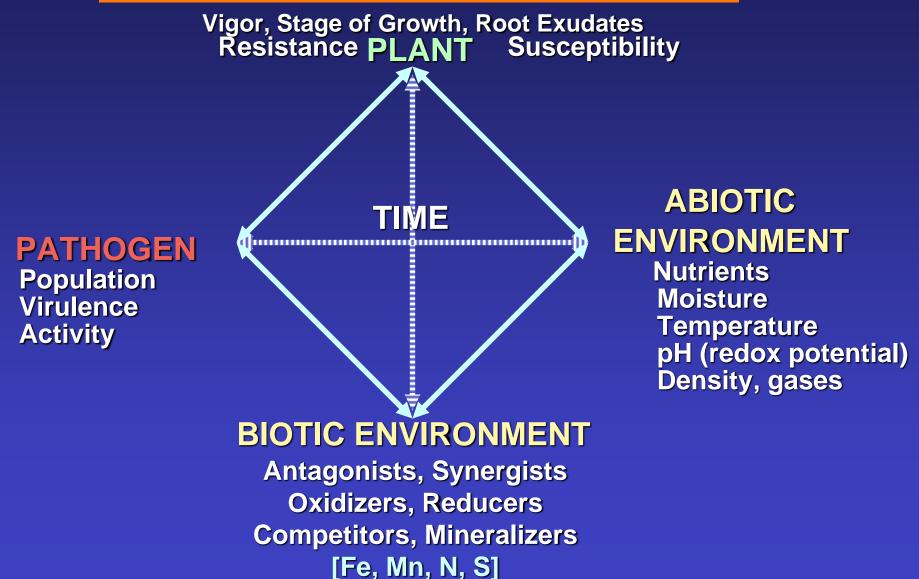
PIRACICABA-SP, 28/02 - 01/03/2005

The Role of Nitrogen and Sulfur on Plant Disease Incidence and Resistance


Background

- Disease in the agricultural production system
- Considerations for using nutrition in disease control
 - Plant genetics
 - Nutrient form
 - Rate applied
 - Method and time applied
 - Nutrient source and associated ions
 - Integration with other practices
- Mechanisms for nutrient control of disease
- Modifying nutrition to control disease

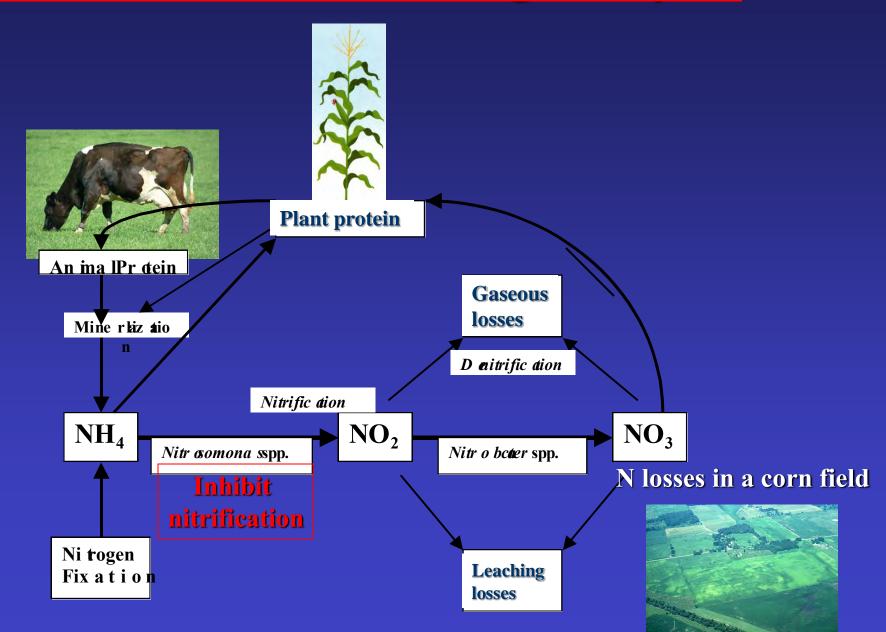
Reported* Effects of Nutrients on Disease


Mineral element	Decreased	Increased	Variable	Total
Nitrogen (N/NH4/NO3)	168	233	17	418
Phosphorus (P)	82	42	2	126
Potassium (K)	144	52	12	208
Calcium (Ca)	66	17	4	87
Magnesium (Mg)	18	12	2	32
Manganese (Mn)	68	13	2	83
Copper (Cu)	49	3	0	52
Zinc (Zn)	23	10	3	36
Boron (B)	25	4	0	29
Iron (Fe)	17	7	0	34
Sulfer (S)	16	3	0	19
Other (Si, Cl, etc.)	71	6	8	85
*Based on 1,200 reports	in the literati	ure		

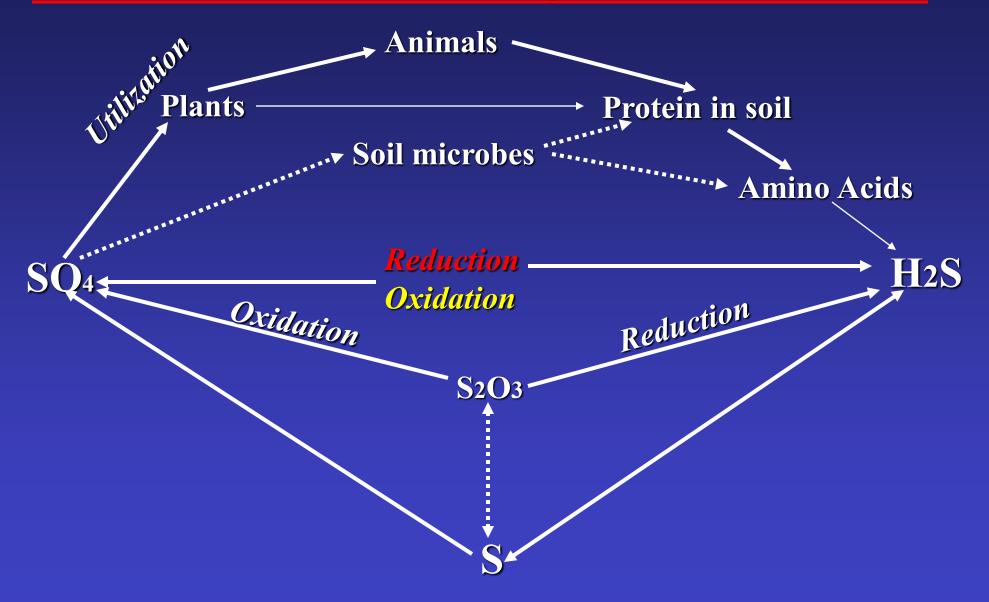
EACH ELEMENT FUNCTIONS AS PART OF A DELICATELY BALANCED INTERDEPENDENT SYSTEM WITH THE PLANT'S GENETICS AND THE ENVIRONMENT

Nutrient Balance is Important

INTERACTING FACTORS DETERMINING DISEASE SEVERITY


Biotic Environment

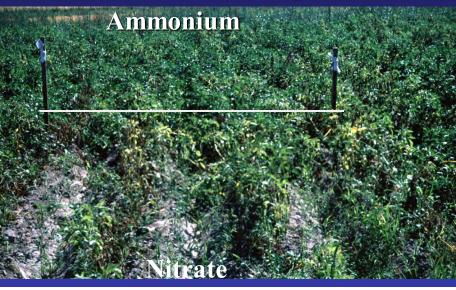
• Indirect effect on disease


- **Previous cropping (rotation)**
 - Soil tilth, microbial balance, weed control, organic matter, etc.
- Microbial activity:
 - Mineralization, oxidation-reduction, nutrient immobilization

•	Direct effect on disease	Mn availability & biological activity			
	– Pathogen	pH:	5.2	7.8	
	– Synergists	Mn form:	Mn ₂ +	Biological activity Mn4+	
	 Biocontrol organisms 	Available:		No	

Schematic of the Nitrogen Cycle

Sulfur Cycle



Take-all and Populations of Mn-oxidizing Rhizosphere Bacteria

Cattle dung (manure)

Implications of Nutrition in Disease

Verticillium wilt of potato

- Observed effects of nutrient amendment on disease severity
- Comparison of plant tissue levels of resistant and susceptible plants
- Comparison of plant tissue levels of diseased and non-diseased plants
- Association of conditions affecting a specific nutrient with differences in disease
- A combination of the above

Relationship of Nitrogen & Sulfur to Disease

1. Genetics of the Plant

2. Nutrient Form or Availability

3. Rate Applied or Available

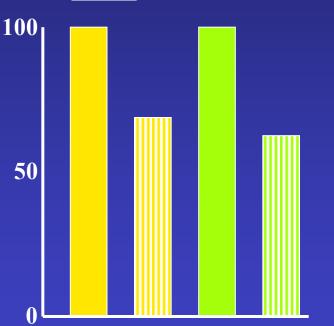
4. Method and Time Applied

5. Source of Element & Associated Ions

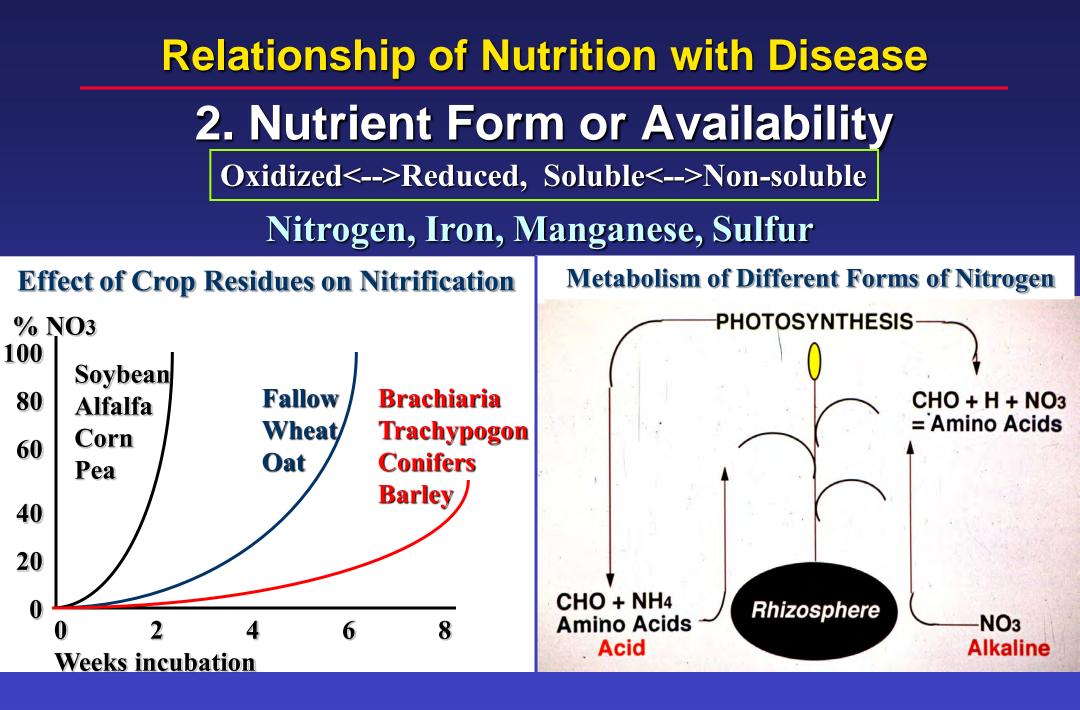
6. Integration with other practices

Relationship of Nitrogen & Sulfur to Disease 1. Genetics of the Plant

Immunity<-->Resistance<-->Tolerance<-->Susceptibility [Nutrient uptake efficiency, nutrient availability] Normal corn
 Glyphosate
 resistant corn
 Normal soybean
 Glyphosate
 resistant soybean



Stage of growth


> Age

Health

Environment

Effect of the glyphosate resistance gene on Mn uptake efficiency

Effect of the Form of Nitrogen on Potato Diseases

	Disease			
Source of N	Rhizoctonia Canker	Verticillium Wilt	Yield (kg/ha)	Percent No. 1
(NH4)2SO4	6.2 a	3.9 b	32670	69 b
Ca (NO3)2	4.8 b	9.4 a	21340	57 a

Some Diseases Reduced by N03, High pH, Ca

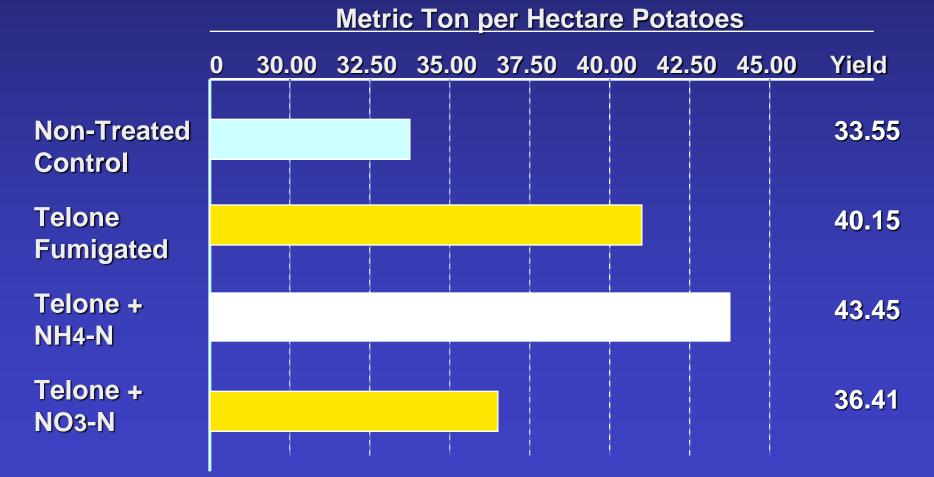
Crop	Disease	Pathogen
Asparagus	Wilt	Fusarium
Bean	Chocolate Spot	Botrytis
Many	Root Rot	Fusarium
Many	Root Rot	Rhizoctonia
Beet	Damping Off	Pythium
Cabbge	Club Root	Plasmodiophora
Many	Yellows	Fusarium
Celery	Yellows	Fusarium
Corn	Ear rot	F. moniliforme
Cucumber	Wilt	Fusarium
Pea	Damping-Off	Rhizoctonia
Pepper	Wilt	Fusarium
Potato	Stem Canker	Rhizoctonia
Tobacco	Frenching	Bacillus cereus
Tomato	Gray Mold	Botryti
Many	White Mold	Sclerotinia
Many	S. Blight	Sclerotium
Many	Wilt	Fusarium
Ornamentals	Crown gall	Agrobacterium tumefaciens

Fusarium Wilt/Yellows Diseases

- Disease of fruit, vegetable, fiber and ornamental crops
- Increased with ammonium-N
- Severe in low (acid) pH soils
- Control: Adequate liming PLUS nitrate-N
- (Decreases Mn and Fe availability)

Diseases Reduced by NH4, Low pH, Mn

Crop	Disease	Pathogen
Bean	Root Rot	Thielaviopsis
	Root Knot	Meloidogyne
Carrot	Root Rot	Sclerotium
Corn	Stalk rot	Gibberella
Egg Plant	Wilt	Verticillium
Many	Root rot	Phymatotrichum
Onion	White Rot	Sclerotium
Pea	Root Rot	Pythium
Potato	Scab	Streptomyces
	Wilt	Verticillium
	Virus	Potato Virus X
Rice	Blast	Magnaporthe
Tomato	S. Wilt	Pseudomonas
	Anthracnose	Colletotrichum
	Wilt	Verticillium
	Virus	Potato Virus X
Wheat	Take-all	Gaeumannomyces


Factors Affecting N Form, Mn Availability and Severity of Some Diseases*

Soil Factor or Cultural Practice	Nitrification	Effect on: Mn Availability	Disease Severity
Low Soil pH	Decrease	Increase	Decrease
Green Manures(some)	Decrease	Increase	Decrease
Ammonium Fertilizers	Decrease	Increase	Decrease
Irrigation (some)	Decrease	Increase	Decrease
Firm Seed bed	Decrease	Increase	Decrease
Nitrification Inhibitors	Decrease	Increase	Decrease
Soil Fumigation	Decrease	Increase	Decrease
Metal Sulfides	Decrease	Increase	Decrease
High Soil pH	Increase	Decrease	Increase
Lime	Increase	Decrease	Increase
Nitrate Fertilizers		Decrease	Increase
Manure	Increase	Decrease	Increase
Low Soil Moisture	Increase	Decrease	Increase
Loose Seed bed	Increase	Decrease	Increase

*Potato scab, Rice blast, Take-all, Phymatotrichum root rot, Corn stalk rot

Effect of N Form on Yield of Verticillium Infected Potato

Nitrate AUBURN Ammonium

Effect of N form & inhibiting nitrification on take-all and rhizosphere Mn oxidizers A. Take-all

B. Manganese oxidizers C. +/- Nitrification inhibitor

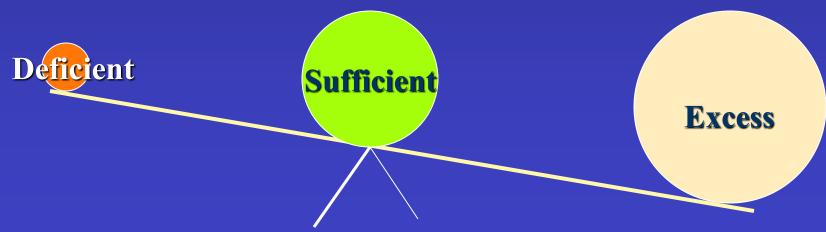
Effect of N source & Inhibiting Nitrification on Stalk Rot of Corn

# of	Nitrogen	% Stalk Rot	
Trials	Source	Ν	N+Inhibitor
6	NH3	38	16
4	Manure	54	23

Swine manure Swine + Nitrapyrin manure Maize Stalk rot

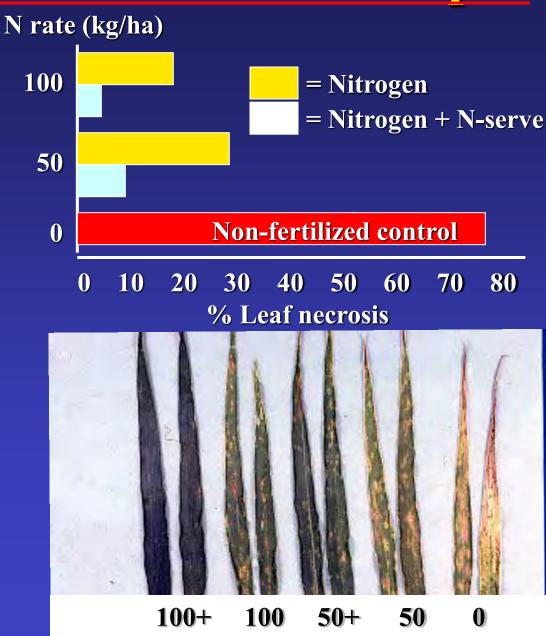
Ammonium N with a nitrification inhibitor

Ammonium N without inhibiting nitrification


Nitrate nitrogen

Effect of Inhibiting Nitrification on Scab of Potato Disease scale: 0=no surface scab, 2=10% surface scab, 6=30% scab.

Relationship of Nutrition with Disease


3. Rate Applied or Available

- Amount available Deficiency to sufficiency versus Sufficiency to excess for the particular plant
- Time available
- Nutrient balance

Effect of N Rate & Form on Tan Spot

 Relationship of Nutrition with Disease

 4. Method and Time Applied

 Soil<-->Seed<-->Foliage, Side-dress<-->Band<-->Broadcast

 Spring<-->Fall<-->Split

Susceptibility of Plant, Favorable Environment, Virulence of Pathogen

NH4 - Sept.

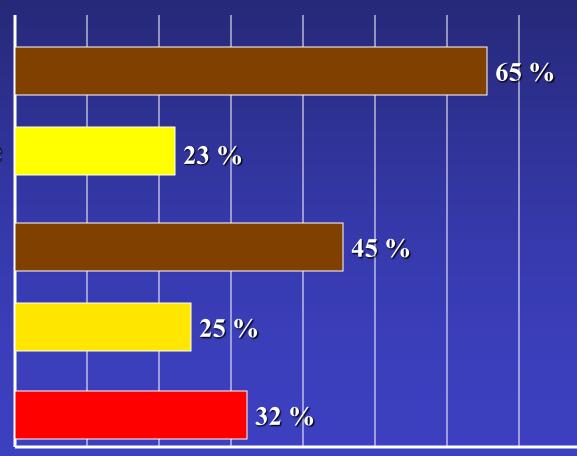
Effect of nitrogen source and time on *Rhizoctonia* "winter-kill" of winter wheat

N Treatment	Time Per	cent Kill
NH3 + N-Serve	September	14
Urea Granuals	February	40
28% N Solution	February	60
Urea	April	14
		Urea - Feb.

Time N Applied on Yield and Sharp-Eyespot of Wheat

N Applied	% Lodging	Disease Index*	kg/ha Yield
Fall	3	2.1	3036
Spring	73	3.2	2640

*Disease indexed on a 0 (healthy)-5 scale


Relationship of Nutrition with Disease**5. Source and Associated Ions**Gas<-->Liquid<-->Granule, Anion<-->Cation (K2SO4/KCI)

Gibberella stalk rot of corn

Effect of N Source and Time Applied On Stalk Rot of Corn

Spring Applied: Swine manure Manure + N-Serve **Fall Applied:** Swine manure Manure+ N-Serve **NH3 Control**

Some Sulfur Compounds for Disease Control

Elemental sulfur Soil pH adjustment **Direct, combined, vaporization Carbon disulfide Fumigation of fruits and soil** Sulfide salts K2S, P2S5, etc. **Xanthates Thiosulfates** Nitrification inhibitors, stabilizers, etc. Sulfate nutrient salts Ca, K, Mn, N, P, etc.

Some Diseases Affected by Sulfur

Disease Bud death Canker Club root Common scab Powdery mildew Root rot Late blight

Leaf spotRamularia beMosaic virusTobacco mosaPatchFusarium nivPowdery mildewUncinula necRoot rotRhizoctonia sRust (stem,stripe)Puccinia spp.SnowmoldTyphula idahoStewarts wiltErwinia stew

Wilt [Bud mite

Pathogen Pycnostysanus azaleae Rhizoctonia solani Plasmodiophora brassicae Streptomyces scabies Erysiphe graminis Armillaria mellea **Phytophthora** infestans Pyrenopeziza brassicae **Ramularia beticola Tobacco mosaic virus** Fusarium nivale Uncinula necator **Rhizoctonia solani** Typhula idahoensis Erwinia stewartii **Dothistroma** Verticillium dahlia **Cecidophyopsis ribis**

Host Rhododendron Potato Crucifers Potato Cereals **Fruit trees** Potato Oil seed rape Sugar beet Nicotiana glutinosa **Turfgrass** Grape Soybeans Cereals Cereals Maize Pine Potato Current

Effect Decrease Increase Decrease Decrease Decrease Decrease Decrease

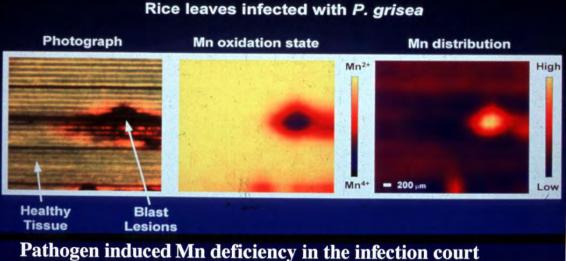
Relationship of Nutrition with Disease 6. Integration with other practices Rotation, Tillage, Seed rate, Herbicide, pH, Moisture

Severe take-all of wheat following glyphosate on soybeans (left), the non-treated control is right.

Less take-all of wheat in a firm (right) than loose seed-bed (left)

No press wheel Press wheel

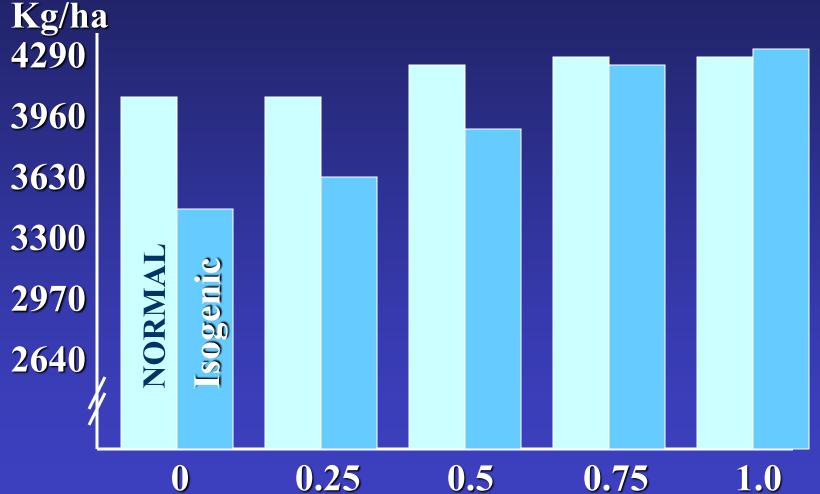
Effect of Crop Sequence & Tillage on Extractable Soil Mn*


Crop Sequence	AmAcetate	Quinol	Total
Continuous corn	25.4 a	104 a	130 a
Corn in corn-Sbean-wheat	t 14.5 b	77 b	91 b
Sbean in corn-Sbean-whea	it 14.4 b	65 c	79 c
Wheat in corn-Sbean-whe	at 13.6 b	67 c	81 bc
Continuous Soybeans	10.4 c	53 d	64 d
Tillage			
Fall Chisel	22.4 a	104 a	126 a
No-Till	16.9 b	63 b	80 b

* Data from sampling long-term rotations - Purdue IPM and Tillage Project

Rice blast, caused by *Pyricularia grisea* (*Magnaporthe grisea*)

Manganese in Rice Blast Lesions


Effects of Cultural Conditions on Mn Availability & Blast

Condition	Manganese availability	Blast severity
Upland rice culture	Decrease	Increase
Alkaline soils	Decrease	Increase
Nitrate nitrogen	Decrease	Increase
Aerobic or dry soils	Decrease	Increase
"Low" temperatures	Decrease (uptake)	Increase
Sandy soil	Decrease	Increase
Manure	Decrease	Increase
High plant populations	Decrease	Increase
Paddy rice culture	Increase	Decrease
Acid soils	Increase	Decrease
Ammonium nitrogen	Increase	Decrease
Inhibiting nitrification	Increase	Decrease
Anaerobic soils	Increase	Decrease
"High" temperatures	Increase	Decrease
Silicon fertilization	Increase	Decrease
Clay & loam soils	Increase	Decrease

Manganese Immobilization

Transient foliage chlorosis of soybeans after applying glyphosate [banded to show effect]

Response of Soybeans to Manganese

Manganese Rate (kg/ha)

"Engineering" a Glyphosate Mn Program

Micronutrients

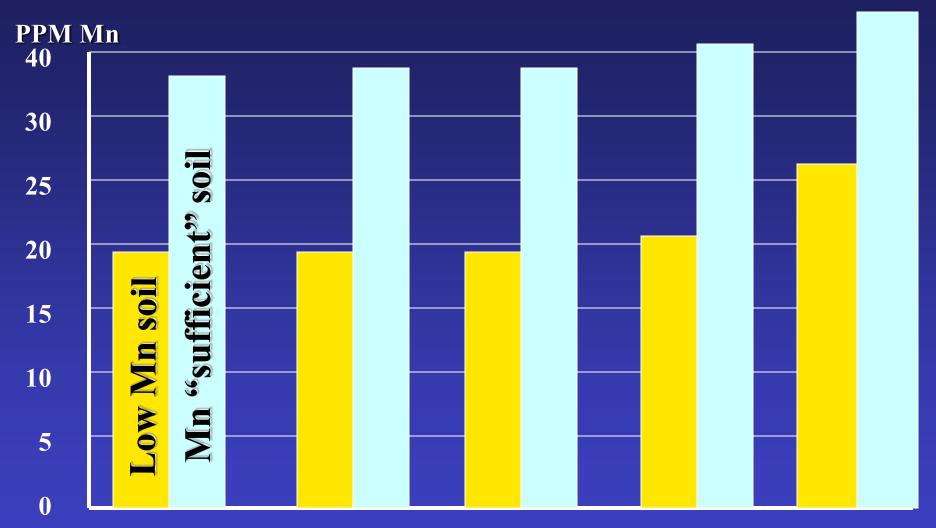
- Copper three sources
 Monganosa six sources
- Manganese six sources
- Zinc five sources
- Combinations factorial

Timing of micronutrient application ✓ Before glyphosate(4-6 days before)

✓ At the same time as glyphosate

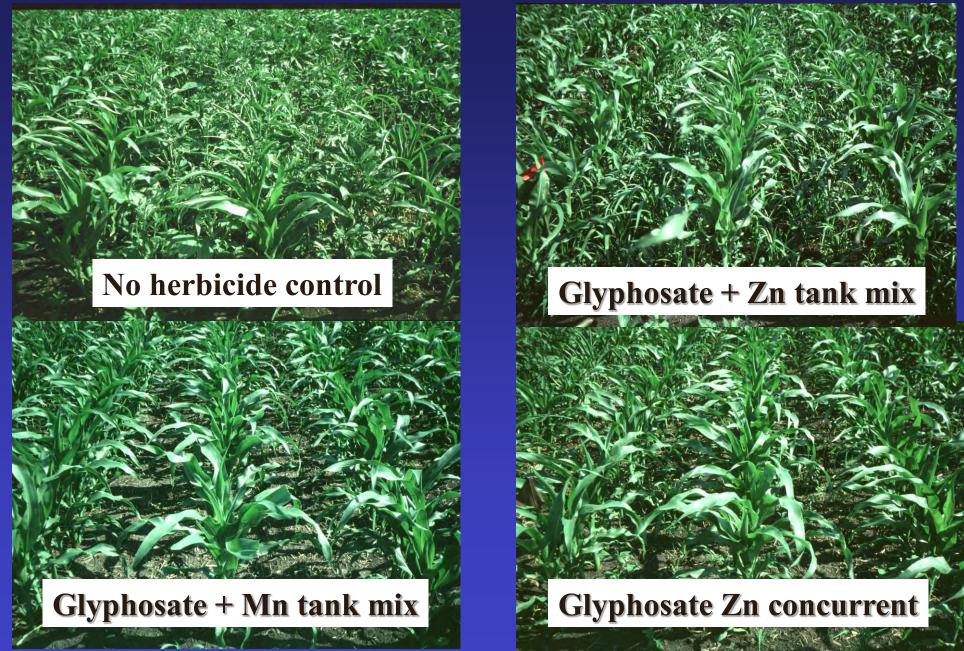
Concurrent Tank-mix

4 - 6 days after Glyphosate
8 - 30 days after glyphosate
Glyphosate formulation



Effect of Glyphosate & Mn Tank Mixes on Chlorophyll & Soybean Grain Yield*

Manganese		SPAD-502	
Formulation	Rate	reading	Yield
	kg/ha	11 DAT	kg/ha
Untreated	None	23.9 a	1584 a
Glyphosate only	None	25.9 a	2178 a
Mn-EAA	0.5	35.6 b	3168 b
Mn-EDTA	0.7	36.8 b	3300 b
Mn-LS	0.6	36.4 b	3828 b
MnSO4	2.5	37.1 b	3696 b


*From Bernards, Thelen, and Penner, 2004

Effect of Time of Mn Application on Tissue Mn

None- 4 daysSame time+ 4 days+9 daysTime Mn Applied Relative to Glyphosate (UltraMax®)

Herbicide-Nutrient Tank Mixes (WeatherMax®)

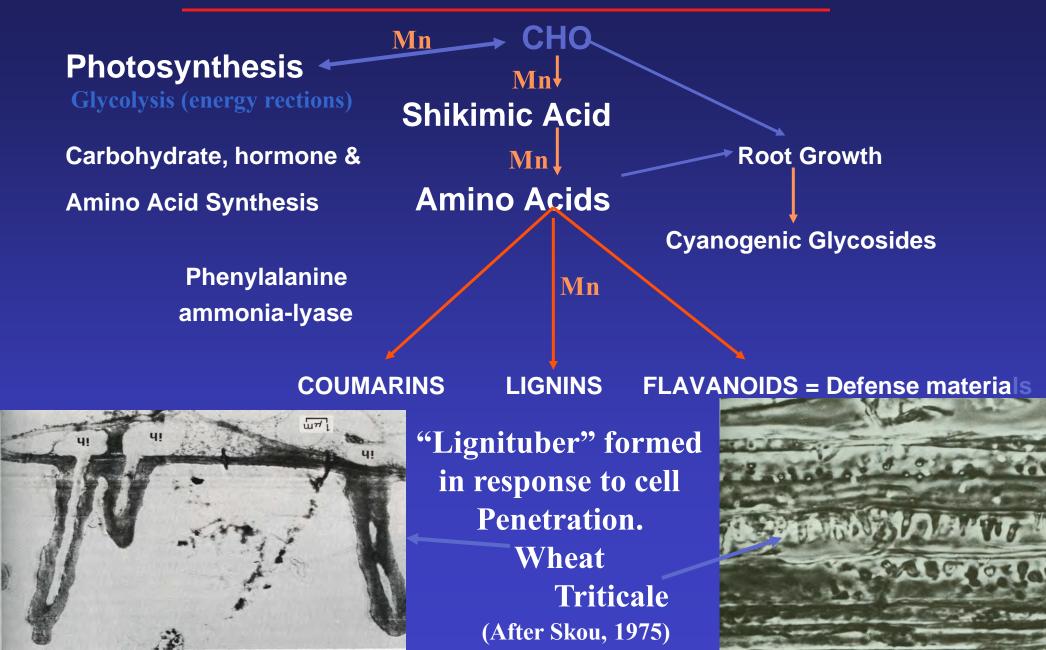
Mechanisms by which Nitrogen and Sulfur Reduce Disease

Increased Plant Resistance

- Physiology phytoalexin, CHO, phenolic production
- Defense- callus, lignituber, cicatrix formation

Disease Escape, Increased Plant Tolerance

- Increased growth roots, leaves
- Shortened Susceptible stage
- Compensation for disease damage


• Modifying the environment

- pH, other nutrients
- Rhizosphere interactions, nitrification, biological balance

Inhibited Pathogen Activity

- Reduced virulence
- Direct effect on survival and multiplication
- Biological control

Physiologic Roles of Manganese

PREDISPOSITION TO STALK ROT: A NITROGEN; then a Carbon DEFICIENCY

• Nitrogen: Rate response up to sufficiency (Maintains photosynthesis) **Excess N increases stalk rot Ammonium reduces (form effect)** "Stay green" hybrids are more tolerant • Tissue is cannibalized: **Storage nitrogen (recycled) Physiological N** (enzymes; Rubisco)

Structural proteins (stalk hydroxyproline)

• Carbon:

Senescence as photosynthesis stops Low carbohydrate reserves increase

120 kg/ha N

120 kg N/ha+Nitrapyrin

Approaches to Improve Disease Control

Increase resistance/tolerance Nutrient Seed Content Nutrient Uptake Efficiency Root Exudate Effects (siderophores/biological) Plant

MICROBES

Mn Reducers/oxidizers Inhibit Nitrifiers Biological control / PGPR

ENVIRONMENT

Nutrient Amendment Nutrient Seed Treatment pH Adjustment Cultural Modification (pH, water, organic matter, crop sequence) Nutrient Balance Biological amendment

REMEMBER

 Nutrition is an integral part of efficient crop production A. Crop quality and quantity B. Disease control

2. No nutrient controls all diseases
 A. Consider each nutrient-disease-environment interaction
 B. Use nutrient form, rate, and time effectively

3. Cultural practices that reduce disease influence nutrition

4. Integrate nutrition and cultural practices for optimum yield and disease control.