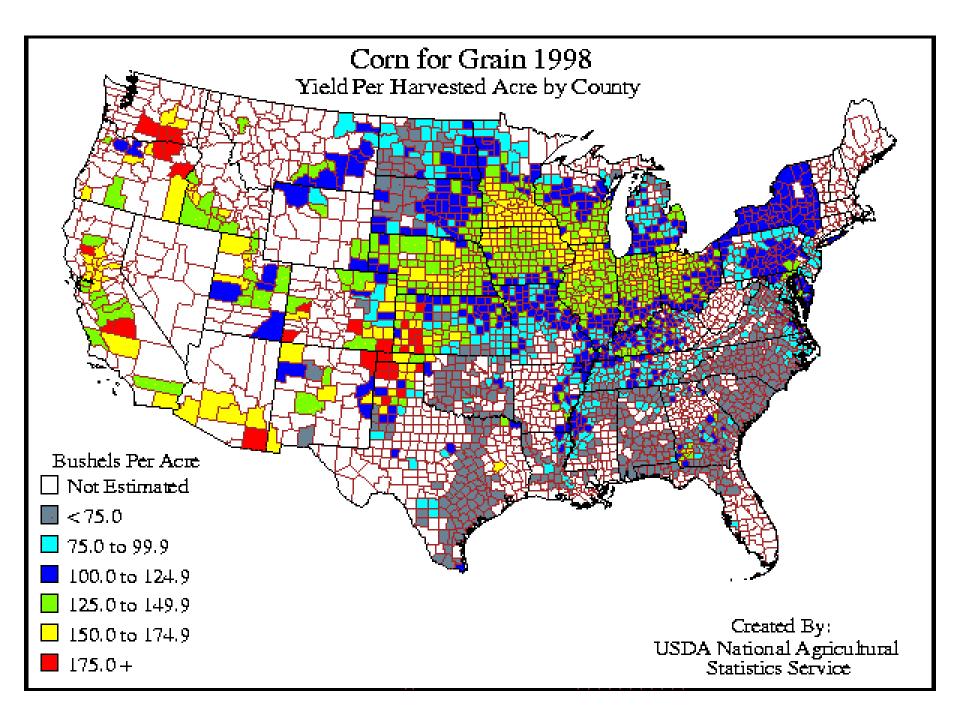
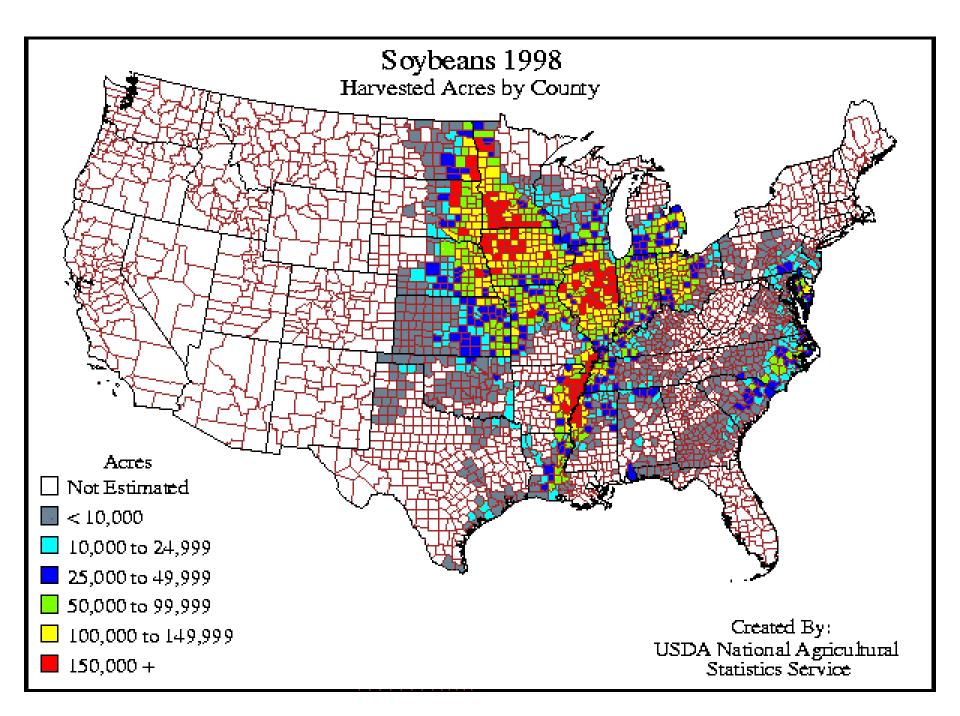
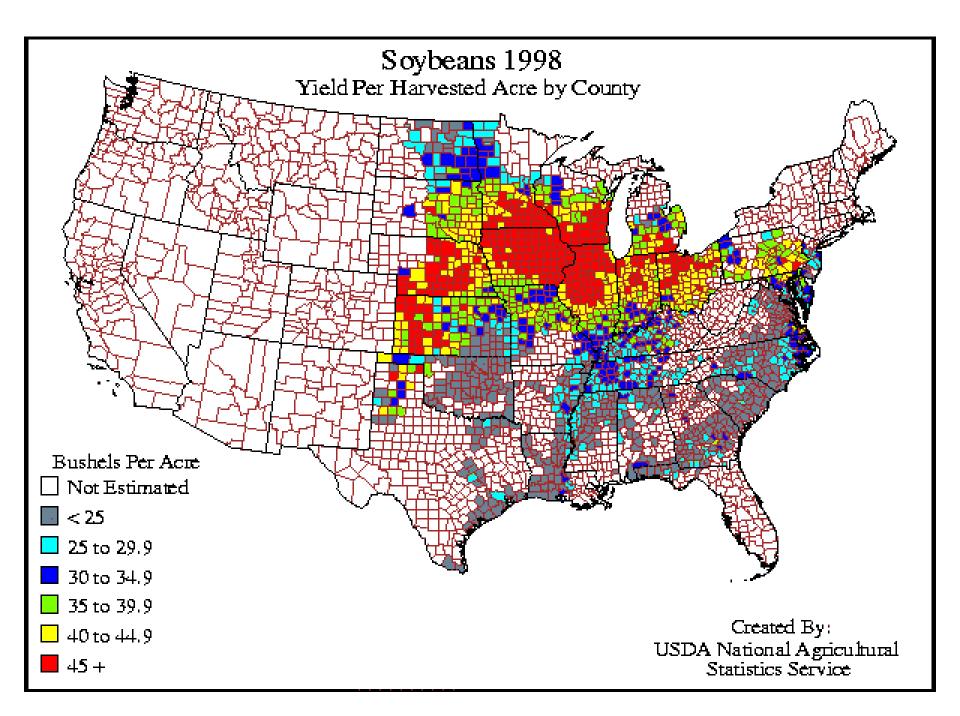

No-Till Corn and Soybean Production Systems in the United States


> Dr. Kim Polizotto Chief Agronomist Potash Corporation of Saskatchewan





### Midwest United States...."Corn Belt"











### Forecast for soybean: area increase mainly in Brazil and India

| Countries | produ | production (10 <sup>6</sup> ton) |      | area (10 <sup>6</sup> ha) |      |      |
|-----------|-------|----------------------------------|------|---------------------------|------|------|
|           | 1998  | 2010                             | 2020 | 1998                      | 2010 | 2020 |
| USA       | 75    | 84                               | 97   | 28.0                      | 28.0 | 27.0 |
| Brazil    | 31    | 45                               | 55   | 12.9                      | 18.0 | 20.0 |
| China     | 14    | 20                               | 24   | 8.0                       | 9.5  | 9.5  |
| Argentina | 18    | 17                               | 20   | 7.4                       | 8.2  | 9.0  |
| India     | 6     | 15                               | 24   | 6.3                       | 10.0 | 12.0 |

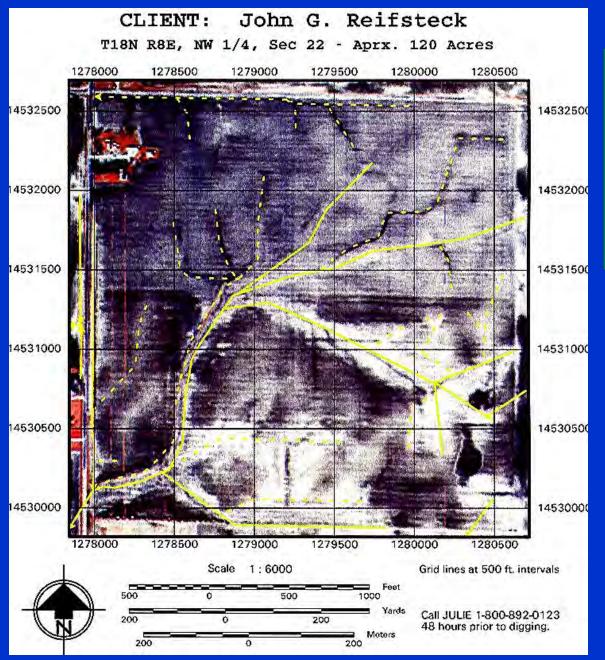
Source: Paroda, R.S. (1999). In: VI World Soybean Research Conference, Chicago

## **Midwest Soils and Climate**

Primarily, silt loam, silty clay loam Poorly/somewhat poorly drained CEC= 15-30 OM=2-5% Naturally fertile 85 to 140 day growing season 650 to 1150 mm rainfall

### Integrated, Intensive, Site-Specific Systems..... .....for Soil and Crop Management





## **Stand Establishment in No-till Corn Production**











Tile Drainage Maps

> Champaign Country Soil and Water Conservation District

Soil Temperature as Affected by Tillage in Wisconsin

|      | <u>Temperature - 5 cm</u> |        |           |  |  |
|------|---------------------------|--------|-----------|--|--|
| Date | No-Till                   | Chisel | Zone Till |  |  |
|      |                           | С      |           |  |  |
| 4-17 | 8.7                       | 13.6   | 13.9      |  |  |
| 4-25 | 7.5                       | 11.7   | 11.0      |  |  |
| 5-2  | 9.4                       | 12.7   | 11.5      |  |  |
| 5-8  | 9.3                       | 9.8    | 9.7       |  |  |
| 5-15 | 14.4                      | 20.9   | 19.2      |  |  |
| 5-24 | 12.9                      | 17.2   | 16.5      |  |  |
| 6-2  | 21.0                      | 24.7   | 22.5      |  |  |

R.P. Wolkowski, U. of Wisconsin









### Effects of tillage and fertilizer treatment on corn emergence, nutrient concentration and early growth (V-6)

| Treatment    | Emergence | Wt.   | Р   | K    |  |
|--------------|-----------|-------|-----|------|--|
|              | plts./ft  | g/plt | %   | %    |  |
| Tillage      |           |       |     |      |  |
| Fall Zone    | 1.5       | 1.2   | .57 | 4.91 |  |
| Spring Zone  | 1.6       | 1.0   | .49 | 3.74 |  |
| Chisel       | 1.8       | 1.1   | .53 | 4.31 |  |
| No-till      | 0.4       | 0.6   | .54 | 4.61 |  |
| Fertilizer   |           |       |     |      |  |
| None         | 1.3       | 0.8   | .48 | 3.87 |  |
| Fall Surface | 1.3       | 1.3   | .56 | 4.55 |  |
| Fall Inject  | 1.4       | 1.0   | .55 | 4.41 |  |
| 2X2 starter  | 1.4       | 1.1   | .54 | 4.79 |  |

Wolkowski, U. of Wisconsin Fertilizer rate=7+20+7 lbs/A Fertilizer Programs for High Yield Corn Production Annual and biennial fertilizer application and custom application is very common and unique to U.S.

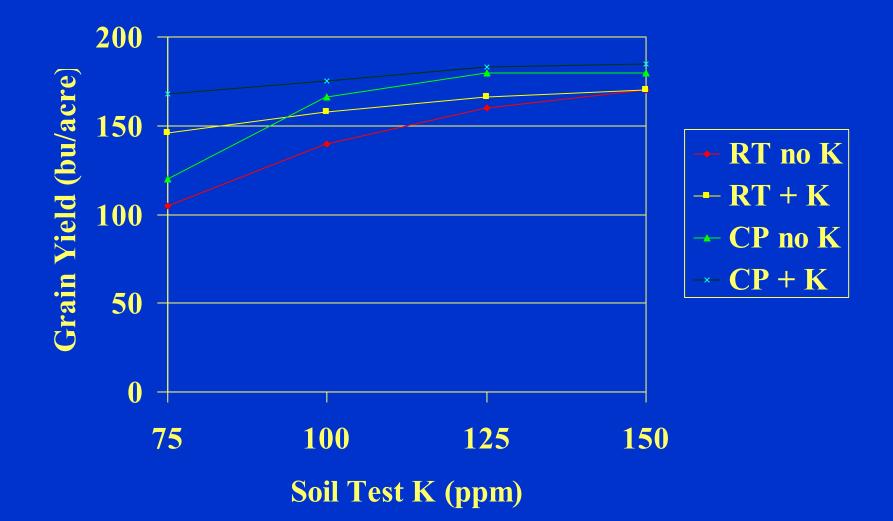


| Soil to | est interpreta | tion rang    | es for phosph | orus (corn) |
|---------|----------------|--------------|---------------|-------------|
|         | S              | oil test cat | egory         |             |
| Soil    | Very Low       | Low          | Medium        | High        |
|         |                | soil P, pp   | m             | _           |
| Α       | <5             | 5-10         | 11-15         | 16-25       |
| С       | <10            | 10-15        | 16-20         | 21-30       |
| E       | <12            | 12-22        | 23-32         | 33-42       |

Wisconsin

### Soil test interpretation ranges for potassium (corn)

|      | Soil test category |             |         |             |  |  |
|------|--------------------|-------------|---------|-------------|--|--|
| Soil | Very Low           | Low         | Medium  | <u>High</u> |  |  |
|      |                    | soil P, ppm |         |             |  |  |
| Α    | <60                | 60-80       | 81-100  | 101-140     |  |  |
| B    | <70                | 70-90       | 91-110  | 111-150     |  |  |
| D    | <70                | 70-100      | 101-130 | 131-160     |  |  |


Wisconsin

### **Phosphorus on No-till Corn in Ohio**

| Bray P <sub>1</sub> | check       | 34 kg         | $P_2O_5$ | 68 kg         | $P_2O_5$ |  |
|---------------------|-------------|---------------|----------|---------------|----------|--|
|                     |             | <b>B'cast</b> | Row      | <b>B'cast</b> | Row      |  |
| ppm                 |             |               | k        | g/ha          |          |  |
| 15                  | 9388        | 9388          | 10258    | 9947          | 10320    |  |
| 26                  | <b>9823</b> | 9574          | 10320    | 10320         | 10258    |  |
| 34                  | 10072       | 10009         | 10320    | <b>10072</b>  | 11315    |  |
| Ave.                | 9761        | 9636          | 10134    | 10134         | 10631    |  |

**Eckert, Ohio State University** 

# Effect of tillage on corn response to row applied K and soil test K



# Effect of soil test K and K rate and method of placement on corn yield

| Soil Test | K <sub>2</sub> O      | Method    | Yield | Leaf      |
|-----------|-----------------------|-----------|-------|-----------|
| <u> </u>  | <u>added</u><br>kg/ha |           | kg/ha | <u>%K</u> |
| 388       | Õ                     |           | 8278  | 2.16      |
| 361       | 34                    | broadcast | 8842  | 2.12      |
| 361       | 34                    | row       | 8403  | 2.15      |
| 412       | 68                    | broadcast | 7964  | 2.27      |
| 412       | 68                    | row       | 8340  | 2.27      |
| 408       | <b>102</b>            | broadcast | 8717  | 2.28      |
| 408       | 102                   | row       | 8591  | 2.33      |

### **Eckert, Ohio State University**

## Effect of tillage and row placed fertilizer on corn yeild



Wolkowski, U. of Wisconsin, 9 gal 7-21-7

### **Evaluation of starter fertilizer placed on dryland no-till corn production, Manhattan, KS 1999**

| C'cast   | S   | tarter H | Fertiliz         | er | Plant | V-6.    | Yield |
|----------|-----|----------|------------------|----|-------|---------|-------|
| Ν        | N   | $P_2O_5$ | K <sub>2</sub> O | S  | Pop.  | Dry wt. |       |
| kg/ha    |     | kg/      | ha               |    | 1000X | lb/z    | kg/ha |
| 168      | 0   | 0        | 0                | 0  | 26    | 256     | 5142  |
| 134      | 33  | 33       | 11               | 0  | 26    | 320     | 5456  |
| 134      | 33  | 33       | 11               | 11 | 26    | 448     | 6835  |
| 101      | 67  | 33       | 11               | 0  | 26    | 326     | 6710  |
| 67       | 101 | 33       | 11               | 0  | 26    | 377     | 6396  |
| 33       | 134 | 33       | 11               | 0  | 26    | 403     | 8152  |
| LSD (0.0 | )1) |          |                  |    | NS    | 160     | 14    |

Broadcast N applied as ammonium nitrate after planting Lamond et al., Kansas State U.

### **Prices and field capacity of no-till planters**

| Attachments on<br>8-row planter        | 1996 total planter<br>list price<br>( U.S. \$) | Field<br>capacity<br>( ha/hr) |
|----------------------------------------|------------------------------------------------|-------------------------------|
| No attachments                         | 26,400                                         | 3.8                           |
| Surface-applied fertilizer attachments | 31,050                                         | 3.4                           |
| 2"X2" banded<br>fertilizer attachments | 34,700                                         | 3.2                           |

J.D.Hibbard, U. of Illinois

|          | Average yield | Average net return | "Worst Case"    |
|----------|---------------|--------------------|-----------------|
|          | increase      | increase above     | scenario net    |
| Starter  |               | fertilizer cost    | return increase |
| kg/ha    | bu/a          | \$/a               | \$/a            |
| 0-0-0    | 0             | 0.00               | 0.00            |
| 25-0-0   | 8.5           | 11.68              | 2.12            |
| 25-30-0  | 15.8          | 19.24              | 9.68            |
| 25-30-20 | 15.1          | 3.93               | -5.63           |

J.D.Hibbard, U. of Illinois

# Nitrogen Management

### Nitrogen source and crop rotation effects on no-till corn yields in Missouri

| N Source*   | Y    | ield |  |  |
|-------------|------|------|--|--|
|             | C/C  | C/S  |  |  |
| ( kg/ha)    |      |      |  |  |
| Am. Nitrate | 7337 | 9469 |  |  |
| Urea        | 6522 | 9093 |  |  |
| UAN         | 6020 | 8403 |  |  |
| UAN+ATS     | 6020 | 8654 |  |  |

All treatments broadcast at planting, 134 kg/ha N Buchholz, U. of Missouri

#### Ammonia volatilization losses and corn yields from surface applied N fertilizers

| N source & method   | 3 year average<br>N loss (%) | 3 year average<br>yield (kg/ha) |
|---------------------|------------------------------|---------------------------------|
| Control             |                              | 5581                            |
| Urea-surface        | 29.5                         | 7776                            |
| UAN-surface         | 16.1                         | 8904                            |
| UAN-dribble         | 12.9                         | 8403                            |
| Am. Nitrate-surface |                              | 9218                            |


134 kg/ha N applied Fox, Penn State U.

#### Effect of application method and N source on corn yield in Kansas

| Treatment              | 5 year average (kg/ha) |
|------------------------|------------------------|
| 0 N check              | 5895                   |
| AA preplant, knife     | 9845                   |
| UAN, preplant, knife   | 9783                   |
| UAN, preplant, brdcas  | t 8968                 |
| UAN, preplant, dribble | e 9093                 |
| UAN, split, knife      | 9720                   |
| UAN, split dribble     | 9407                   |
| LSD (0.05)             | 250                    |

Average N rate 130 kg/ha Gordon, U. of Kansas

#### Effect of a urease inhibitor on corn yield



Surface applied urea, average of 21 experiments

#### Corn yield as influenced by the use of a nitrification inhibitor

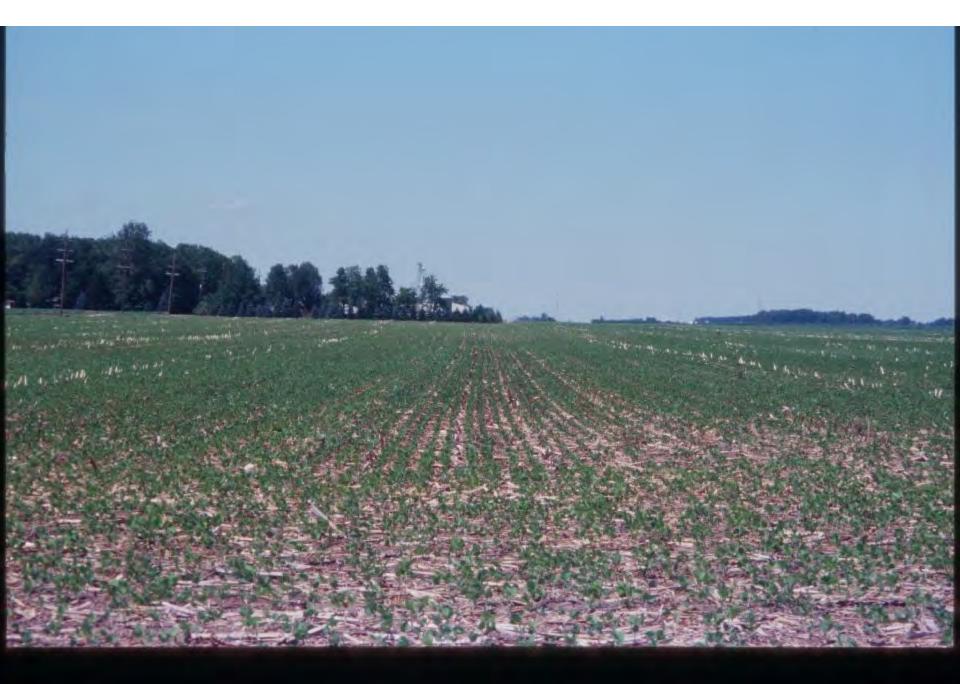
| N treatment       | 4 year average yield |
|-------------------|----------------------|
|                   | (kg/ha)              |
| Fall AA           | 8026                 |
| Fall AA+Nitrapyrn | 8591                 |
| Spring AA         | 8591                 |
| Split AA          | 9030                 |

Randall, U. of Minnesota

## Soil pH of two sampling depths as influenced by 5 years of surface application of several rates and sources of N fertilizer

|                                 | <u> </u> |                 |        | ı)   |
|---------------------------------|----------|-----------------|--------|------|
| Source                          | 0        | 50              | 100    | 150  |
|                                 |          | p               | •H     |      |
|                                 |          | 0-2             | 2.5 cm |      |
| Check                           | 6.73     |                 |        |      |
| NH <sub>4</sub> NO <sub>3</sub> |          | 6.30            | 6.23   | 5.45 |
| Urea                            |          | 6.52            | 6.20   | 5.90 |
| UAN                             |          | 6.52            | 6.44   | 5.84 |
| $(NH_4)_2SO_4$                  |          | 6.40            | 5.77   | 4.70 |
|                                 |          | <b>0-5.0 cm</b> |        |      |
| Check                           | 6.46     |                 |        |      |
| NH <sub>4</sub> NO <sub>3</sub> |          | 6.52            | 6.53   | 5.94 |
| Urea                            |          | 6.52            | 6.22   | 6.23 |
| UAN                             |          | 6.58            | 6.49   | 6.20 |
| $(NH_4)_2SO_4$                  |          | 6.59            | 6.04   | 5.20 |

#### **Eckert, Ohio State University**


#### High yield no-till corn production in the U.S.

- 1. Select hybrids suitable for no-till
- 2. Successful stand establishment
- 3. High populations
- 4. High P and K soil test levels and annual/biennial applications of P and K at removal rates
- 5. Starter fertilizer, 1:1 N:P ratio
- 6. Split applications and high rates of N fertilizer, with nitrification or urease inhibitors. Injected or strip applied.
- 7. Excellent weed and insect control
- 8. Rotation with soybeans

### **No-Till Soybean Production**







#### Yield of soybeans planted in three systems in Wisconsin

| Cultivar/Herbicide<br>system                                  | ave. yield (3 year)<br>kg/ha |
|---------------------------------------------------------------|------------------------------|
| conventional variety<br>conventional herbicides               | 3897                         |
| <b>Glyphosate resistant</b><br><b>conventional herbicides</b> | 3662                         |
| Glyphosate resistant<br>Glyphosate herbicide                  | 3823                         |
| LSD (0.01) 100kg/ha                                           |                              |

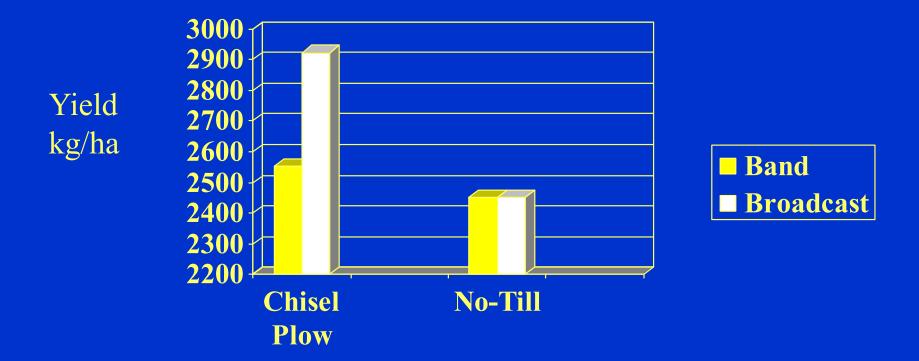
**Oplinger, U. of Wisconsin** 

#### Soybean Yield as affected by tillage system and row width

| Tillage System | Row Width | Average Yield |
|----------------|-----------|---------------|
|                | (cm)      | (kg/ha)       |
| Fall Chisel    | 17.8      | 3,554         |
|                | 76.2      | 2,506         |
| No-till        | 17.8      | 3,366         |
|                | 76.2      | 2,372         |

Purdue University

## The effect of row spacing and seeding rate on yield of no-till soybeans in Wisconsin


| Row Spacing<br>cm | Seeding rate<br>seeds/ha | Yield<br>kg/ha |
|-------------------|--------------------------|----------------|
| 19                | 432,250                  | 3857           |
|                   | 555,750                  | 3998           |
|                   | 679,250                  | 4038           |
| 38                | 308,750                  | 4025           |
|                   | 432.250                  | 4132           |
|                   | 555,750                  | 4172           |
| 76                | 185,250                  | 3454           |
|                   | 308,750                  | 3689           |
|                   | 432,250                  | 3702           |

**Average of 6 locations per year for 3 years with 2 varieties Oplinger, Wisconsin**  Soybean Fertilization Programs

## Soybean yield as affected by tillage system, row spacing, and rate of phosphate in Minnesota

| Tillage     | Row     |      | ]    | P2O5 A | Applied | d (kg/h | a)          |      |
|-------------|---------|------|------|--------|---------|---------|-------------|------|
| System      | Spacing |      | 0    | 26     | 52      | 78      | 104         | ave. |
|             | (cm)    |      |      | (      | (kg/ha) | )       |             |      |
| fall chisel | 17.8    |      | 2956 | 3440   | 3667    | 3702    | 4018        | 3554 |
| 66          | 76.2    |      | 2009 | 2533   | 2278    | 2768    | 2943        | 2506 |
|             |         | ave. | 2486 | 2990   | 2976    | 3839    | 3480        |      |
| no-till     | 17.8    |      | 2956 | 3137   | 3581    | 3669    | 3501        | 3366 |
| 66          | 76.2    |      | 1167 | 2318   | 2405    | 2479    | <b>2681</b> | 2372 |
|             |         | ave. | 2466 | 2728   | 2997    | 3077    | 3091        |      |

## Effect of Tillage and Placement of P on soybean yield



#### The effect of tillage system on soybean yield in Minnesota

| Tillage     | Frequency of Phosphate Application |      |  |  |  |
|-------------|------------------------------------|------|--|--|--|
| System      | Annual Biennial                    |      |  |  |  |
|             | (kg/ha)                            |      |  |  |  |
| no-till     | 2607                               | 2466 |  |  |  |
| fall Chisel | 2701                               | 2788 |  |  |  |

Yields averaged over P rates, P placement, and row spacing Rehm, U. of Minnesota

#### The effect of phosphate placement on soybean yield in Minnesota

|           | <b>Frequency of Phosphate Application</b> |          |  |
|-----------|-------------------------------------------|----------|--|
| Placement | Annual                                    | Biennial |  |
|           | (kg/ha)                                   |          |  |
| Band      | <b>2641</b>                               | 2593     |  |
| Broadcast | <b>2667</b>                               | 2661     |  |

Yields averaged across row spacing, phosphate rate and row spacing Rehm, U. of Minnesota

#### Effect of K fertilization on no-till soybean yield in Ohio

| Soil Test | K <sub>2</sub> O added | Yield     |      |  |
|-----------|------------------------|-----------|------|--|
|           |                        | Broadcast | Band |  |
|           | kg/ha                  | kg/l      | ha   |  |
| 438       | 0                      | 334       | 6    |  |
| 378       | 34                     | 3427      | 3212 |  |
| 413       | 68                     | 3306      | 3198 |  |
| 438       | 102                    | 3501      | 3198 |  |

**Eckert, Ohio State University** 

#### Stratification of K fertilizer after repeated application over 3 years

| Soil profile<br>depth | No-till<br>no K added | No-till<br>K added | Conventional<br>K added |
|-----------------------|-----------------------|--------------------|-------------------------|
| (cm)                  |                       | (ppm)              |                         |
| 0-2.5                 | 120                   | 235                | 130                     |
| 2.5-5.0               | 115                   | <b>168</b>         | 120                     |
| 5.0-7.5               | 105                   | <b>192</b>         | 170                     |
| 7.5-10                | 145                   | 175                | 160                     |

95 kg of K added each year Eckert, Ohio State University

### Nitrogen Fertilization of Soybeans

#### Effects of seed inoculation and nitrogen fertilizer on soybean yield

| Treatment<br>Inoculation N time |           | Yield<br>kg/ha | leaf N<br>% |     |
|---------------------------------|-----------|----------------|-------------|-----|
|                                 | kg/ha     |                |             |     |
| +                               | 0         | -              | 3541        | 2.9 |
| +                               | <b>40</b> | June 6         | 3501        | 3.0 |
| +                               | 40        | July 2         | 3971        | 3.0 |
| _                               | 0         |                | 3440        | 2.9 |
| -                               | 40        | June 6         | 3480        | 2.9 |
| -                               | <b>40</b> | July 2         | 3520        | 2.9 |

Vitosh, Michigan State U.

#### Yield and brown stem rot response of soybean to early season nitrogen (V-2)

| Tillage     | Yi       | eld  | BSR sev  | verity  |
|-------------|----------|------|----------|---------|
| ]           | N rate 0 | 30   | 0        | 30      |
|             | k        | g/ha | (disease | rating) |
| No-till     | 3769     | 3978 | 49.6     | 34.5    |
| Conventiona | al 4280  | 4401 | 44.0     | 31.3    |

**Oplinger, U. of Wisconsin** 

## Effects of N application on dryland and irrigated soybeans in Georgia

| N treatment | Yield   | Bean wt. |
|-------------|---------|----------|
| kg/ha       | kg/ha   | g/100    |
|             | non-irr | rigated  |
| 0           | 2426    | 13.0     |
|             |         |          |
| 45          | 2459    | 13.5     |
|             | irrig   | ated     |
| 0           | 3400    | 14.2     |
|             |         |          |
| 45          | 3581    | 14.5     |

Application at R-3-5 stage Gasho, U. of Georgia

# What are top no-till soybean producers doing to increase yield and profitability?

- 1. Select varieties based on yield potential, maturity, disease resistance, SCN resistance, and weed control options.
- 2. Plant in narrow rows, 17.8-38 cm
- 3. Maintain high P and K soil test levels. Apply P in bands or strips at removal rates, every year. Apply K broadcast as needed for rotation at removal rates.
- 4. Apply K in Fall or before corn in 2 year rotation
- 5. Excellent insect and weed control



### **Extra Slides**

| <b>Soybean Production Costs,</b> |                    |  |
|----------------------------------|--------------------|--|
| 1997                             |                    |  |
| Factor                           | <u>Cost, \$/ha</u> |  |
| Fertilizer                       | 54                 |  |
| Herbicide                        | 86                 |  |
| Seed                             | 44                 |  |
| Machinery                        | <b>69</b>          |  |
| Total variable                   | 253                |  |
| Other non-land costs             | <b>299</b>         |  |
| Land costs                       | 371                |  |
| Source: Illinois FBFM Records    |                    |  |

#### The effect of row spacing on soybean yield in Minnesota

|                    | Frequency of phosphate application |          |  |
|--------------------|------------------------------------|----------|--|
| <b>Row Spacing</b> | Annual                             | Biennial |  |
| (cm)               | (kg/ha)                            |          |  |
| 17.8               | 2788                               | 2600     |  |
| 76.2               | 2513                               | 2647     |  |

**Yields averaged over tillage, phosphate, rate and placement Rehm, U. of Minnesota** 















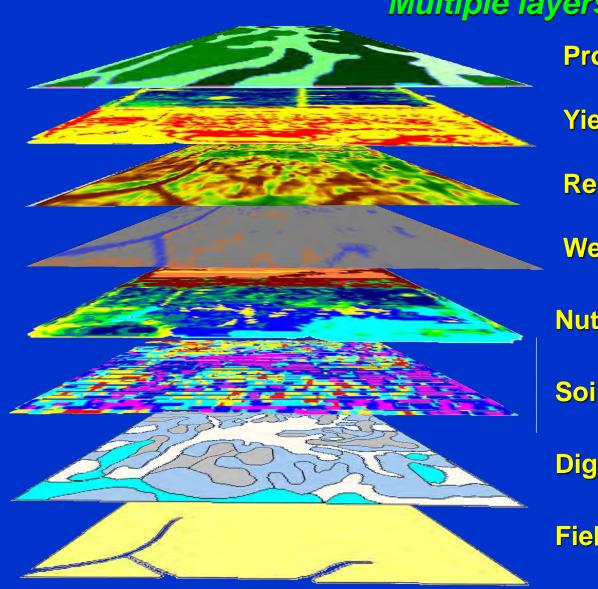


### VRT - Variable Rate Technology



Uses GPS
Applies appropriate rates
Maximize efficiency of fertilizer dollar

### Yield Monitoring Systems




#### Records yield and moisture

Use with GPS to generate yield maps

Maps help determine and manage field variability

### **GIS - Geographic Information System**



Multiple layers of each!

**Profitability Map** 

Yield Map

**Remote Sensing Imagery** 

Weed Map

**Nutrient Application Map** 

**Soil Test Data** 

**Digital Soil Survey** 

**Field Boundaries** 

