Boas Práticas para Uso Eficiente de Fertilizantes em Pastagens

Prof. Dr. Luís César Dias Drumond (34) 99914-1941 UFV CRP - Equipe GAPPI www.gappi.com.br www.portal.ufv.br/crp

FERTIRRIGAÇÃO DE PASTAGEM

- Uso de plantas forrageiras: são plantas que extraem elevados valores de nutrientes, principalmente N e K alta produção de massa em condição tropical;
- •Os resultados de pesquisa e de campo são excepcionais;

Exportação de macro e micronutrientes em plantas com exploração econômica da parte vegetativa: pastagens, milho e cana de açúcar

Dlanta que se emplere	N	P	K	Ca	Mg	S	В	Cu	Zn	Mn	Fe
Planta que se explora parte vegetativa	k	kg/t de MS da parte aérea					g/t de MS da parte aérea				
parte regetativa			expoi	rtável				ex	xportáv	/el	
Capim Mombaça e											
Tanzânia	20	2,3	20	5,5	3,3	2	15	7	21	90	124
Capim Elefante	20	2,3	20	5,5	3,3	2	25	10	40	179	178
Capim Tifton 85	25	2,5	20	5,5	3,3	2	17,5	9	40	120	125
Capim Marandu	18	1,9	21	4,5	2,8	1,7	-	-	-	-	-
Capim Decumbens	14	1,9	18	4	2,7	1,7	-	-	-	-	-
Milho Silagem	12,4	1,4	14	3,1	1,7	-	-	-	-	-	-
Milheto	28	2,9	25	10,8	4,2	-	-	15	37	51	304
Cana Planta	15,4	1,8	15,3	10,7	5,1	4,7	_	-	-	-	-
Cana Soca	13,1	2,1	17,3	6,7	4,5	3,9	_	-	-	-	-

Fonte: Abreu et al. (2007); Aguiar (2011); Corsi e Martha Jr. (1997); Malavolta (1979, 1986); Martha Jr. (2007); Prado (2008); Sousa e Lobato (2004); Werner et al., (1996, Boletim técnico 100).

NÍVEL DE EXTRAÇÃO DE NUTRIENTES DE ACORDO COM A CONDIÇÃO DE UTILIZAÇÃO

Condição de pastejo rotacionado											
Produção de		Extração (kg/ ha)									
matéria seca (t/ano)	N P K Ca Mg S Cu										
10	150	15	200	24	21	79	0,23	0,08			
20	300	30	400	48	42	158	0,46	0,16			
30	450	45	600	72	63	237	0,69	0,24			
40	600	60	800	96	84	316	0,92	0,33			
50	750	75	1000	120	105	395	1,15	0,41			
60	900	90	1200	144	126	474	1,38	0,49			

Fonte: (CORSI e NUSSIO, 1993); (AGUIAR, 2002); (DRUMOND E AGUIAR, 2005).

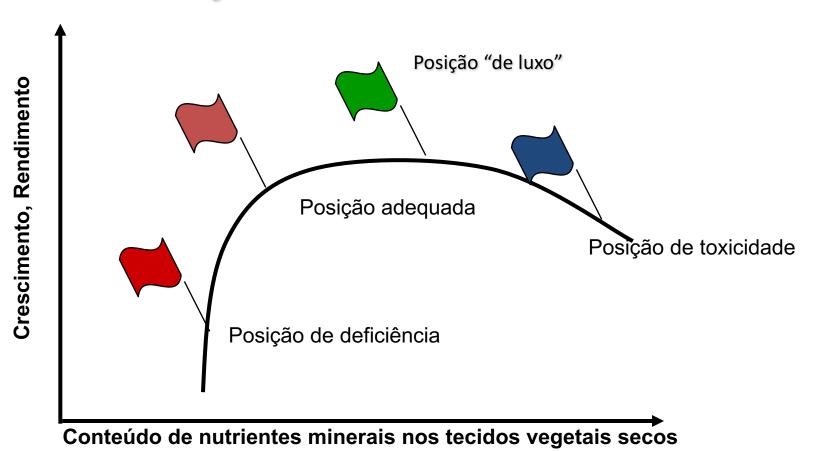
QUANDO REALIZAR A FERTIRRIGAÇÃO?

Taxa de acúmulo de forragem (kg MS/ha/dia) nas diferentes estações do ano, para tratamentos de adubação no capim Mombaça, submetido a pastejo intensivo

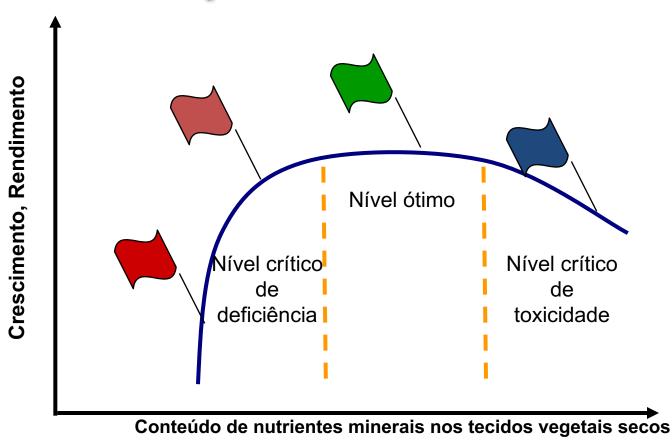
Tratamento Dias pós pastejo	Primavera	Verão	Outono	Inverno
1 Dia	91,46 ^a	137,80 ^a	53,92 ^a	40,77 ^a
7 Dias	88,61 ^a	119,89 ^a	54,34 ^a	64,92 ^a
14 Dias	95,15 ^a	124,94 ^a	62,90 ^a	67,82 ^a

Aguiar e Drumond (2004)

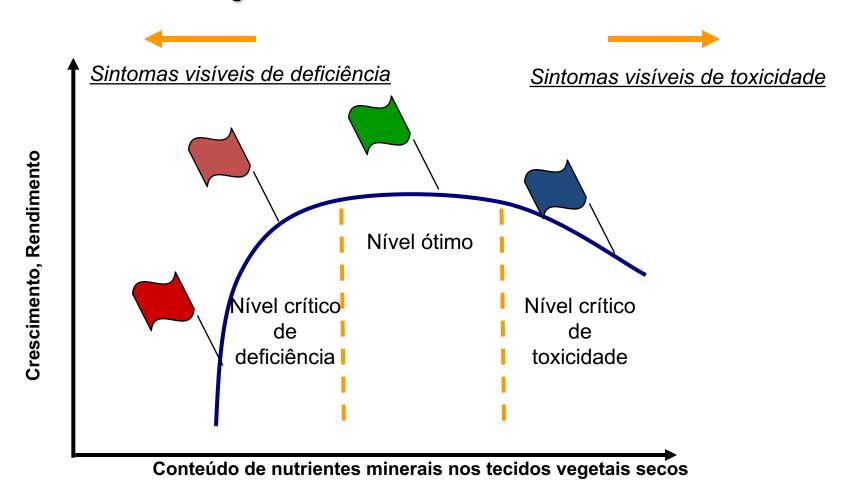
FERTIRRIGAÇÃO DE EUCALIPTO


- A exportação de nutrientes pela cultura do Eucalipto é relativamente grande, quando comparada com outras culturas.
- •Segundo Rocha et al (2014), para incremento médio anual (IMA) de 40 m³.ha¹¹.ano¹¹ de madeira com casca, exporta-se 6,6 kg/ha de N; 1,4 kg/ha de P; 3,9 kg/ha de K; 6,8 kg/ha de Ca; 0,8 kg/ha de Mg e 1,3 kg/ha de S.

Biomassa e nutrientes acumulados em uma plantação de *Eucalyptus grandis* com sete anos de idade e IMA igual a 40 m³/ha.ano de madeira com casca


	M	Nutrientes Exportados										
Compartimento	Massa	N	P	K	Ca	Mg	S	В	Fe	Zn	Mn	Cu
	t/ha			kg	/ha					g/ha		
Folha	3	57	5	21	25	11	3	89	203	41	313	8
Galho	4	18	3	15	18	6	1	55	233	92	653	13
Casca	12	40	12	67	160	15	4	152	519	130	790	43
Lenho	150	224	42	88	110	16	45	291	7.191	1.280	880	148
Total Parte Aérea	169	339	62	191	313	48	53	587	8.146	1.543	2.636	212
Raiz Grossa	20	75	3	28	31	6	3	32	789	59	112	12
Raiz Fina	4	22	1	4	17	3	1	15	708	43	61	6
Serapilheira ¹	25	187	10	36	209	24	13	250	9.500	520	4.300	58
TOTAL	218	623	76	259	570	81	70	884	19.143	2.165	7.109	288
TOTAL EXPOR	TADO											
POR TONELA PRODUZIO		2,86	0,12	3,41	2,20	0,14	0,86	4,06	30,73	28,49	27,45	0,51

Fonte: Rocha et al, 2014


Relação Nutrientes / Crescimento

Relação Nutrientes / Crescimento

Relação Nutrientes / Crescimento

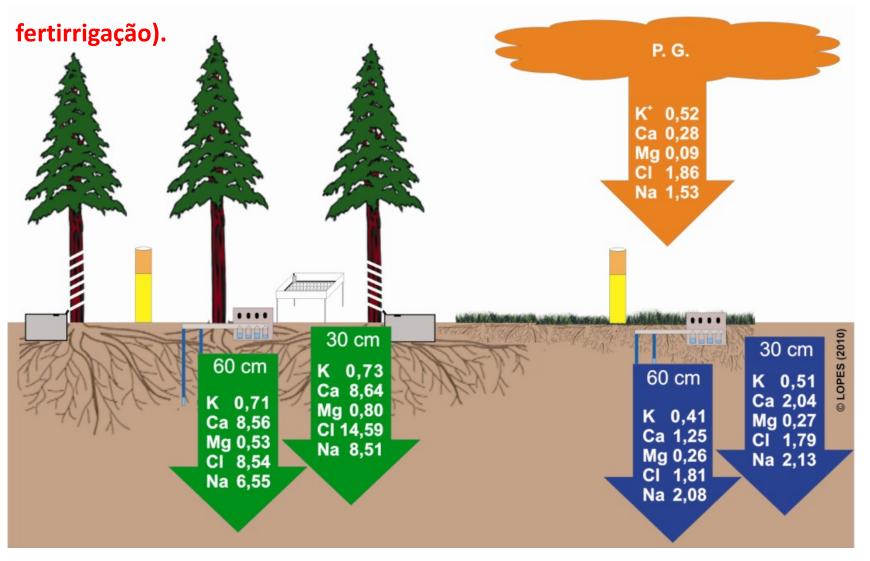
SOLUÇÃO IDEAL PARA O PRODUTOR

CONCEITO DE FERTIRRIGAÇÃO

Os elementos nutritivos encontram-se dissolvidos na água do solo

As plantas "bebem" os nutrientes

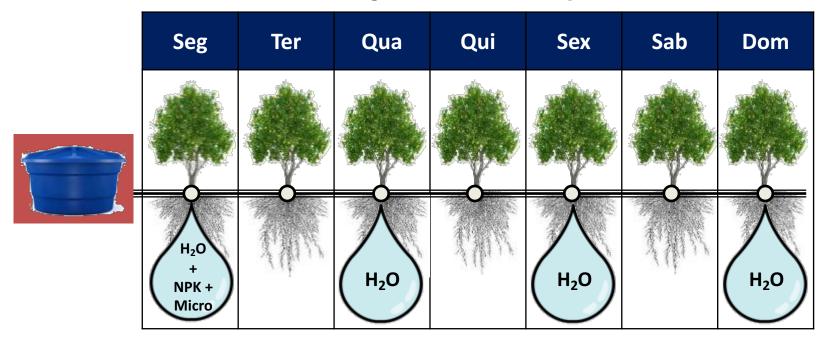
FERTIRRIGAÇÃO


- •Os fertilizantes são fornecidos de acordo com a sugestão das análise de solo, folha e solução do solo.
- •São fornecidos em função da água de irrigação, se calculam em mgL⁻¹ ou kg/L e se quantificam globalmente como um valor de CE (dSm⁻¹)

Não deve separar a irrigação do adubo

Para se adubar bem primeiro tem que se irrigar bem

FERTIRRIGAÇÃO


Seleção dos Nutrientes: (Qualquer nutriente podem ser fornecido via

FERTIRRIGAÇÃO

 Reposição de água, de acordo com a necessidade hídrica da fruta mais aplicação quantitativa de nutrientes (agenda de aplicação) – Equilíbrio de evapotranspiração.

Agenda de aplicação

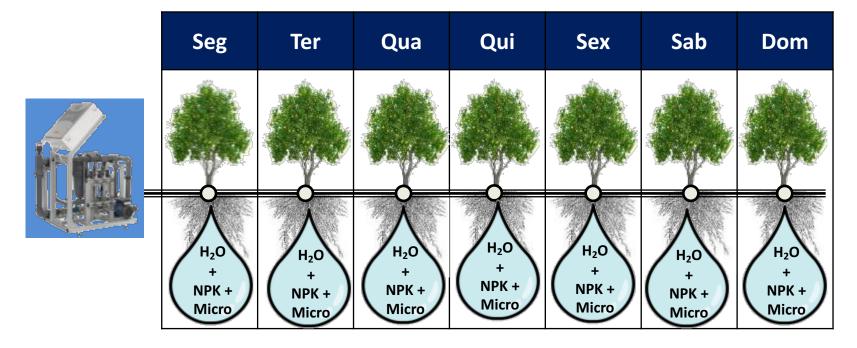
Benefícios da fertirrigação

- Aplicação dos nutrientes de acordo com as fases fenológicas da cultura
- Eficiência no uso dos fertilizantes
- Melhor praticidade com redução do tráfego de máquinas no campo
- Maior controle no crescimento e resposta da planta
- Não danifica mecanicamente as raízes
- Possibilidade de monitoramento do pH e CE da solução do solo

Análise de campo

Folhas de cana com baixo teor de N (acima) e com alto teor N (ao lado).

Análise de laboratório



SOLUÇÃO IDEAL O PRODUTOR

NUTRIRRIGAÇÃOTM

 Reposição de água, de acordo com a necessidade hídrica da planta com aplicação proporcional de nutrientes, ou seja, aplicação de solução nutritiva de acordo com a fase fenológica da planta. (Fertirrigação x Fenologia x Fisiologia)

Benefícios da NutrirrigaçãoTM

- NutrirrigaçãoTM
- Maior desenvolvimento radicular
- Maior frequência de aplicação de nutrientes
- Menor concentração de sais por aplicação (< 1,7 dS/m)
- Maior eficiência de absorção pela planta menor potencial osmótico
- Redução de risco por perdas: lixiviação / lavagem

Fertikit

Balanço climático e Taxa de <u>Fotossíntese e Abertura estomática</u>

Parâmetros da cultura

- Coeficiente da cultura (Kc)
- Necessidade hídrica em função da produção de massa

Fonte: Solo Fertil Pedologia

e Engenharia

EXEMPLO DE ANÁLISE DO SOLO

Proprietário:

Propriedade: Fazenda A

Município:

Pium

U.F.: MG

Entrada: 03/05/2015 Solicitante: Prof Luis Cesar

Saída: 09/05/2015 Número da Amostra: 84.776

Identificação da Amostra: Área irrigada_Malha 1

Tipo de Análise: Fertilidade + Micro

	Resultado da Análise de Solo										
M.O.	Р	рН	K	Ca	Mg	Na	Al	S.B.	H+Al	CTC	V
g/dm³	mg/dm³					mmolc/dm³					%
27	6	6,0	0,6	45	15	-	0	61	26	87	70
N	C. g/dm³	S	В	Cu	Fe	Mn	Zn	m	Areia	Limo	Argila
g/dm³	C. g/dm ³		mg/dm³					% g/dm³			
1,4	-	5	0,52	0,8	11,4	8,2	1,1	0,0	-	-	-
K/CTC K na CTC %	Ca/CTC Ca na CTC %	Mg/CTC Mg na CTC %	AI/CTC Al na CTC %	Na/CTC Na na CTC %	H+AI/CTC H+AI na CTC %	Ca/Mg	Ca/K	Mg/K	C.E. mmbol/cm		
0,69	51,72	17,24	0,00	-	29,89	3,00	75,00	25,00	-		

INTERPRETAÇÃO: BALANÇO DE MASSA

pH: para saturação de base desejada de 80% Aplicar 900 kg de Calcário/ha.

Pode ser substituído por cal hidratada agrícola e aplicar via fertirrigação com os devidos cuidados.

ADUBAÇÃO CONSIDERANDO 9 UA/ha (média ano)

N: 1.000 kg de Uréia/ha por ano;

P: 250 kg de MAP/ha por ano;

K: 720 kg de KCl/ha por ano;

S: 160 kg de Sulf. de Amônio/ha por ano;

Quantidade de adubos aplicados nesta pastagem

Considerando uma área fertirrigada de 100 ha:

Uréia: 100.000 kg

MAP: 25.000 kg

KCI: 72.000 kg

Sulf. de Amônio: 16.000 kg

Taxa de injeção: 8 a 12 m³/h

Motobomba multiestágios de 4 a 5 CV

Custo de Produção Investimentos

Itens	Custo (R\$/ha)	% invest.
Equipamento de irrigação	10.000,00	3,56
Cerca elétrica e convencional	773,00	0,55
Implantação da pastagem (sementes, fertilizantes, etc.)	857,00	0,31
Manejo de animais e equipamentos manejo da irrigação	1423,00	0,41
Rede de água	350,00	0,12
Outros (mão de obra para instalação)	114,00	0,08
Subtotal	13.517,00	5,03

Custo de Produção Custo Operacionais

Item	Custo (R\$/ha)	% invest.
Fertilizantes	2.171,70	17,18
Energia elétrica	890,00	7,04
Calagem (com operação)	360,00	2,85
Manutenção de equipamentos	160,00	1,27
Sal mineral	145,00	1,15
Mão de obra (2 pessoas)	1.050,00	8,31
Suplementação com milho (fubá)	10,11	0,08
Custo financeiro dos animais adquidos (juros 7% ao ano)	4.371,71	34,59
Outros (controle de plantas daninhas, pragas e manutenção de cercas)	120,00	0,95
Subtotal	9.278,52	73,41

Custo de Produção Outros

Item	Custo (R\$/ha)	% invest.
Juros (investimento - 12% ao ano)	1.622,04	12,83
Administração/outros (12% CO)	1.113,42	8,81
Subtotal	2.735,46	21,56

Resumo

Investimentos	5,03%				
Custos Operacionais	73,41%				
Outros	21,56%				

RECEITA

ITEM	Recria/engorda	Recria	Engorda
Receita (R\$/@)	46,31	54,62	15,00
Receita (R\$/ha.ano)	4.789,11	6.333,56	1.247,98

FAZENDA 6 AMIGOS

PRODUÇÃO DE FENO **FAZENDA 6 AMIGOS**

FAZENDA BOA FORTUNA

FAZENDA BOA FORTUNA

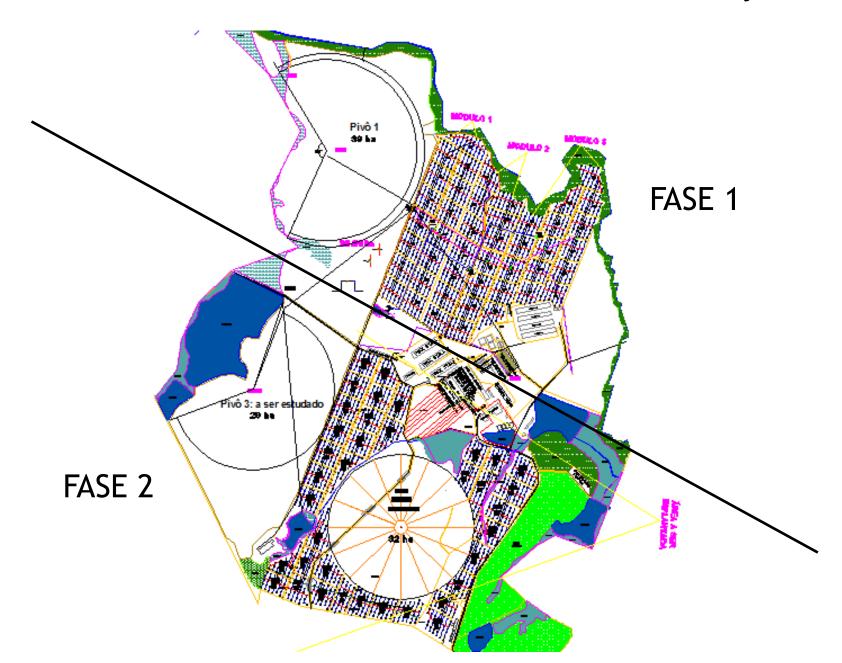
FAZENDA PINO

largura da folha e a qualidade nutricional.

FAZENDA LA FLORIDA

HENO	DATA	ALTURA DO PASTO TOTAL DESDE EL SUELO (cm)	MÉDIA (cm)	ALTURA DE CORTE DESDE EL SUELO (cm)	PESO VERDE CORTADO RASO EL SUELO (kg)
TANGOLA	26/08/20 16	70	69,2	15	0,745
		75			
		66			
		55			
		80			

DETERMINACIÓN DA MS		% MS	MASA EM KG DE MASA VERDE CORREGIDO/HECTARE	MASA EM KG DE MS/HECTARE CORREGIDO
PESO INICIAL (g)	PESO FINAL (g)		kg MN/ha	kg MS/ha
100	26	26,00	23.340	5.280

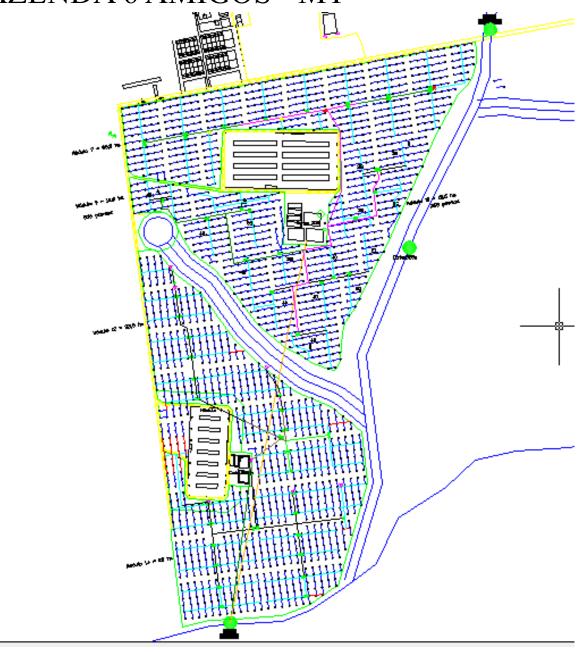


EQUIPAMENTOS MAIS UTILIZADOS NA FERTIRRIGAÇÃO DE PASTAGEM

PRINCIPAIS SISTEMAS DE IRRIGAÇÃO DE PASTAGENS

- → Pivô central.
- → Sistemas de aspersão em malha (Aspersão Automatizada ou Semi-Automatizada).

PLANEJAMENTO DO PROJETO DE UM FERTIRRIGAÇÃO

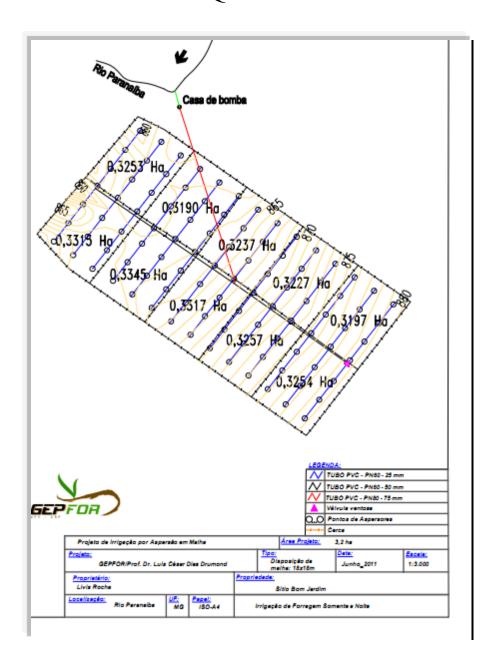


IRRIGAÇÃO POR ASPERSÃO AUTOMATIZADA (MALHA)

PROJETO ASPERSÃO AUTOMATIZADA FASE 1 – FAZENDA 6 AMIGOS - MT

MONTAGEM

FERTIRRIGAÇÃO


INJEÇÃO DIRETA NA MALHA

PROJETO PARA PEQUENOS PRODUTORES

A COMPREENSÃO TRANSFORMA MENTES. A AÇÃO TRANSFORMA VIDAS!

Lotação média 2011-2015: 58 vacas em 6 ha

Custo de produção do leite: R\$ 0,69 Média recebido pelo produtor: R\$ 0,96

Mudança na vida de pequenos produtores

PROCESSO DE FERTIRRIGAÇÃO

INJEÇÃO DIRETA NO PIVÔ

PREPARO DA SOLUÇÃO A SER APLICADA

NOVAS PESQUISAS - GOTEJAMENTO

- Alta eficiência de uso de água;
- Exige mão-de-obra altamente especializada;
- Problemas na reforma da cultura novas variedades, transgênicos, ...
- Em várias regiões do Brasil existe alto teor de ferro na água entupimento.
- Espaçamento de plantio versus colheita mecanizada (silagem).

Uso de Racional de Efluentes na Fertirrigação de Pastagem

OBEDIÊNCIA ÀS CONDICIONANTES AMBIENTAIS

✓ PROCESSOS EFICIENTES DE REDUÇÃO DO RISCO AMBIENTAL COM APLICAÇÃO DA AR

PRESERVAÇÃO DO AMBIENTE

✓ ADOÇÃO DE CRITÉRIOS DE REPOSIÇÃO DOS NUTRIENTES DAS CULTURAS

IMPEDE A PERCOLAÇÃO DE NUTRIENTES

✓ MONITORAR PERFIL DO SOLO

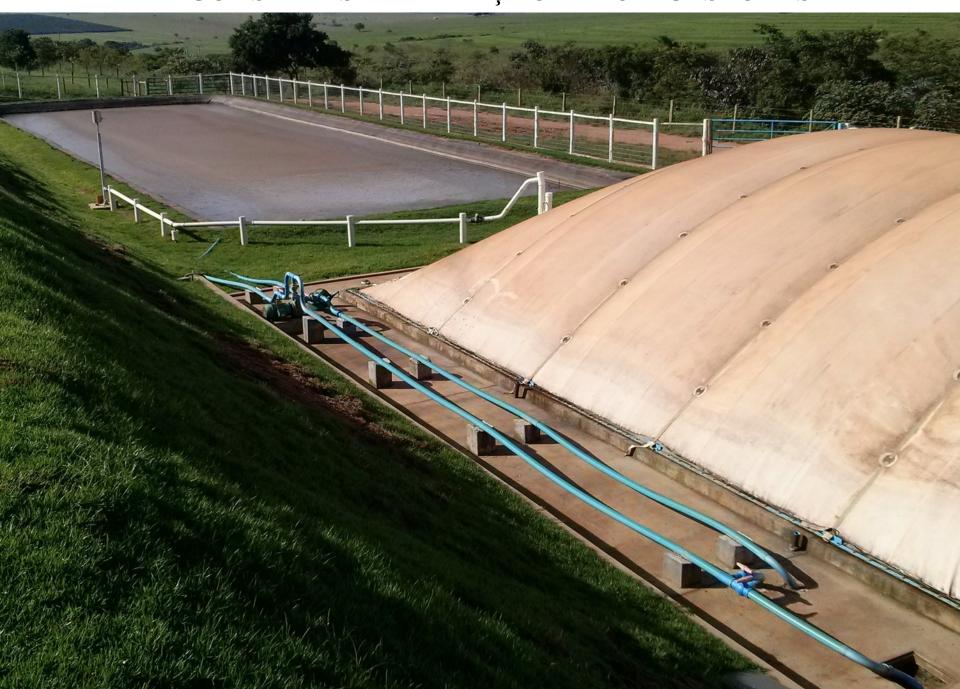
MOVIMENTAÇÃO DE ELEMENTOS QUÍMICOS NO PERFIL DO SOLO

FONTE: ADAPTADO DE KONZEN, 2012

FERTIRRIGAÇÃO DE PASTAGEM COM AR

- A água residuária (AR) oriunda da lagoa de estabilização normalmente possui elementos como nitrogênio (N), fósforo (P), potássio (K) e micros, essenciais para a produção agrícola e silvipastoril.
- Sistemas de tratamento da água residuária, destaca-se a disposição na forma de fertirrigação. A aplicação via sistema de aspersão, pode ser excelente fonte de adubação, desde que precedida de condições que assegurem a proteção do meio ambiente.

MISTURA DE ARB + ARS + ARI+ ÁGUA


CONFINAMENTO DE GADO DE CORTE

LAGOAS DE ESTABILIZAÇÃO E BIODIGESTORES

N° animais/ Volume produzido por animal N° de dias por ano em Produção anual de N° unidades unidade (L/dia) produção ARS (m³) Elemento 4400 365 96.360 **60** químico Análise Produção por Produção por Amostra Equivalente (t/ano) Análise (kg/m³) dia (kg/dia) mês (kg/mês) (mg/L)ano (t/ano) (kg/m^3)

7588,35

1862.96

4039,09

457,07

161,24

0.80

0,72

3,45

Custo (R\$/t)

1.300,00

2.160,00

1.925,00

1.800,00

1.900.00

1.320,00

6.570,00

1.950,00

91,06

22,36

48,47

5,48

1,93

0.01

0,01

0.04

N

P2O5

K20

CaO

MgO

S

Cu

Zn

Ganho financeiro (R\$)

263.062,80

230.373,63

187.322,84

57.590,52

69.441,73

13.39

438,29

403,99

808.647,18

91,06

51,19

58,39

7,68

3,29

0.01

0,01

0.04

0,945

0.531

0,606

0,057

0,020

0.000

 $\frac{0,000}{0,000}$

SÍNTESE

264m³ ARS /dia

8.030m³ ARS /mês

96.360m3 ARS /ano

4.400 animais

252,95

62,10

134,64

15,24

5,37

0.03

0,02

0,12

Formulação (t)

202,36

106,65

97,31

31,99

36,55

0,01

0,07

0,21

N

P

K

Ca

Mg

S

Cu

Zn

945,00

232.00

503,00

56,92

20,08

0.10

0,09

0,43

Adubos

Uréia

MAP em pó

Cloreto de Potássio em

Cloreto de Cálcio

Sulfato de Magnésio

Flor de Enxofre

Sulfato de Cobre

Sulfato de zinco

* Preço de adubos em novembro/2014

0,945

0.232

0,503

0,057

0,020

0.000

0,000

0.000

Teores

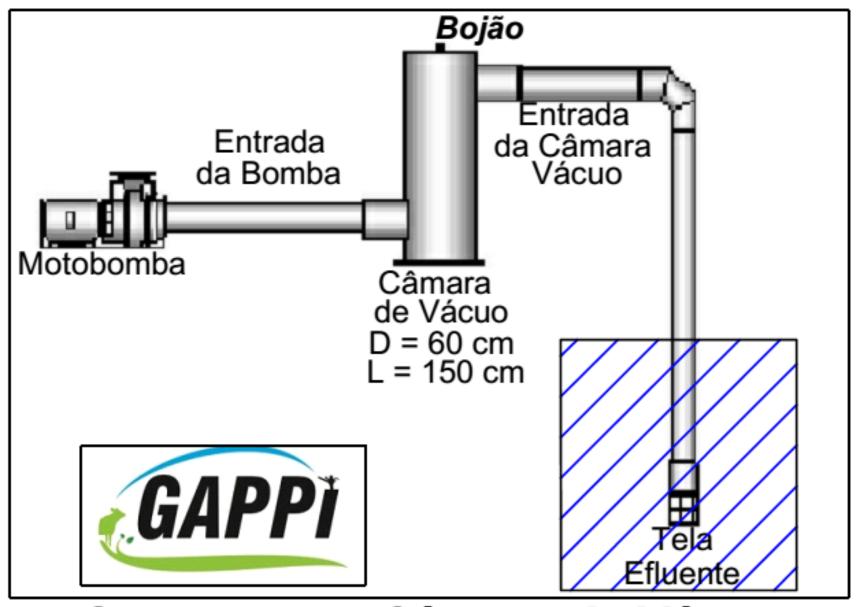
45%N

48% P2O5

60% K2O

24% Ca

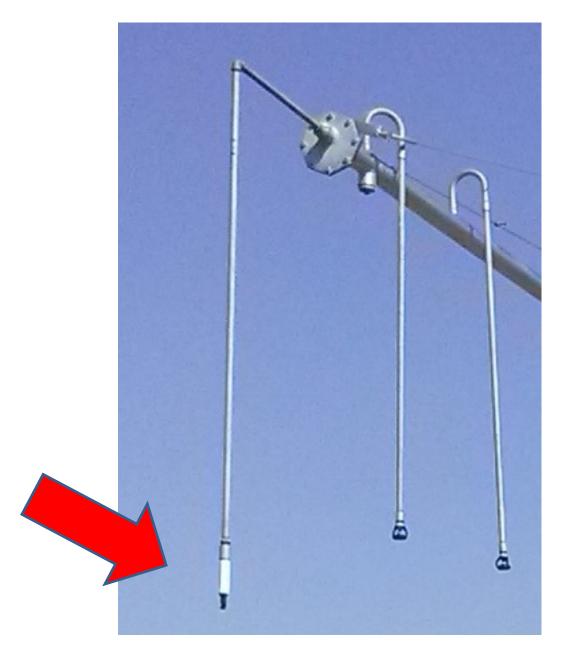
9% Mg


95% S

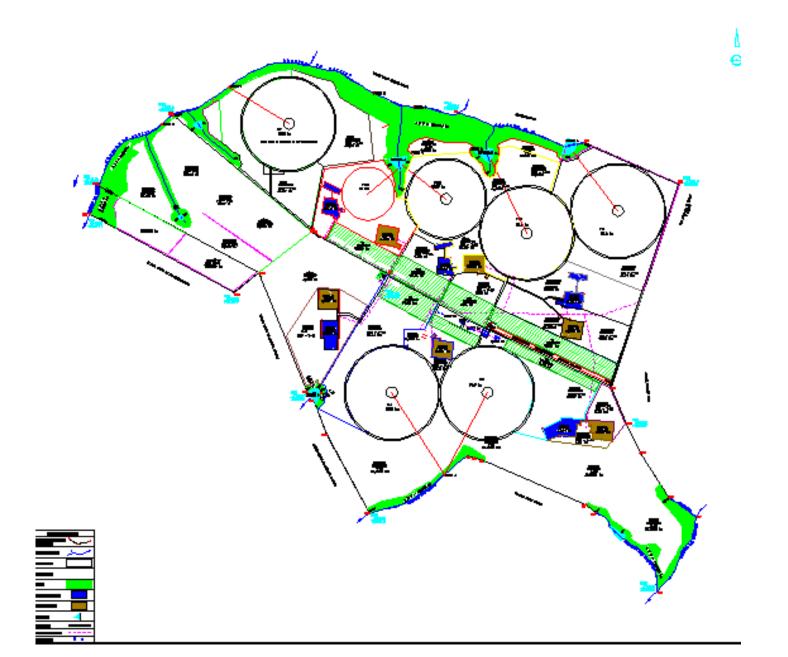
13% Cu

20% Zn

TOTAL


PLANILHA DE CÁLCULO ECONÔMICO DE APLICAÇÃO DE ARS - UPL

Sucção com Câmara de Vácuo

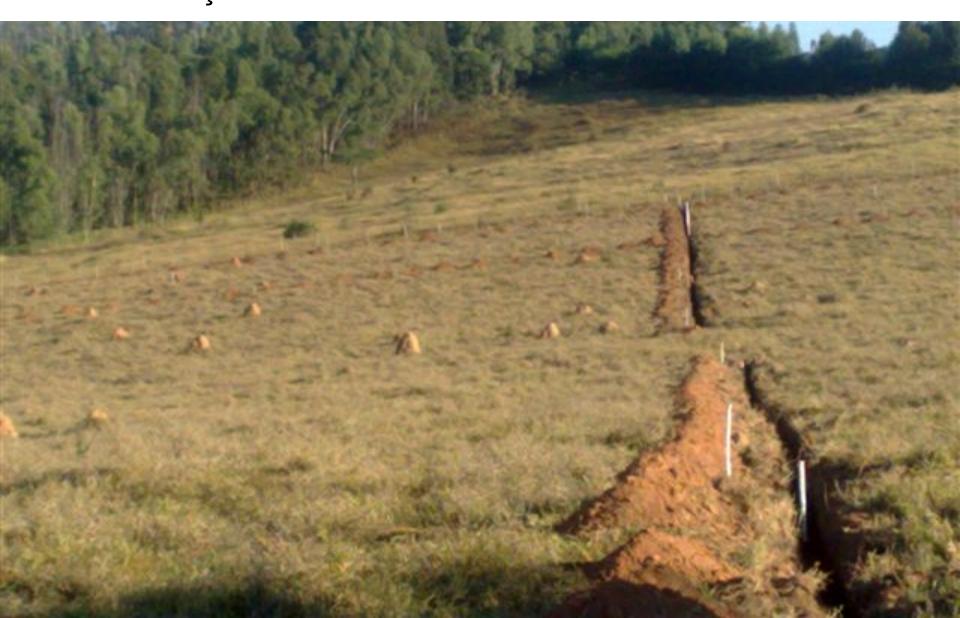

END SPRAY

PROJETO FAZENDA SANTA THEREZA

PLANTA NO AUTOCAD

PLANEJAMENTO E INSTALAÇÃO DOS PIVÔS

T3000-2 ESPAÑOL


Custo do litro de leite: R\$ 0,65 Preço de venda : R\$ 1,02

FONTE: dados do produtor, 2013.

CONVÊNIO UFV CRP e IND. DE RAÇÕES PATENSE

FERTIRRIGAÇÃO COM ÁGUA RESIDUÁRIA DE AGROINDÚSTRIA

PATENSE – ITAÚNA

ANÁLISE DE PROFUNDIDADE DE SOLO

RESULTADOS – ÁREA 1

Análise 16.100_Setembro de 2014_Área 1_1 metro de profundidade.

pН	MO (N)	P	K	Ca	Mg
Ácido	Baixo	Muito Baixo	Muito Baixo	Médio	Médio
S	В	Cu	Zn	Fe	Mn
Baixo	Baixo	Médio	Baixo	Alto	Médio

Análise 16.101_Setembro de 2014_Área 1_2 metros de profundidade.

pН	MO (N)	P	K	Ca	Mg
Ácido	Baixo	Muito Baixo	Muito Baixo	Médio	Baixo
S	В	Cu	Zn	Fe	Mn
Baixo	Baixo	Baixo	Baixo	Médio	Baixo

Análise 16.102_Setembro de 2014_Área 1_3 metros de profundidade.

pН	MO (N)	P	K	Ca	Mg
Ácido	Baixo	Muito Baixo	Baixo	Baixo	Baixo
S	В	Cu	Zn	Fe	Mn
Baixo	Baixo	Baixo	Baixo	Médio	Médio

RESULTADOS – ÁREA TESTEMUNHA

Análise 16.118 Setembro de 2014 Área Não Fertirrigada (Testemunha) 1 metro de profundidade.

рН	MO (N)	P	K	Ca	Mg
Ácido	Baixo	Muito Baixo	Muito Baixo	Alto	Médio
S	В	Cu	Zn	Fe	Mn
Baixo	Baixo	Médio	Baixo	Alto	Alto

Análise 16.119_Setembro de 2014_Área Não Fertirrigada (Testemunha)_2 metros de profundidade.

pН	MO (N)	P	K	Ca	Mg
Ácido	Baixo	Muito Baixo	Muito Baixo	Alto	Médio
S	В	Cu	Zn	Fe	Mn
Baixo	Baixo	Baixo	Baixo	Alto	Médio

Análise 16.120_Setembro de 2014_Área Não Fertirrigada (Testemunha)_3 metros de profundidade.

pН	MO (N)	P	K	Ca	Mg
Muito Ácido	Baixo	Muito Baixo	Baixo	Alto	Médio
S	В	Cu	Zn	Fe	Mn
Baixo	Baixo	Médio	Baixo	Alto	Alto

EFEITO DA FERTIRRIGAÇÃO COM ÁGUA RESIDUÁRIA DE AGROINDÚSTRIA SOBRE A ATIVIDADE MICROBIANA DE UM SOLO SOB PASTAGEM

Convênio UFV CRP – Ind. de Rações Patense

PARÂMETROS AVALIADOS

Tabela 3. Parâmetros microbiológicos avaliados nos sistemas (médias ± erro padrão) nas profundidades de 0-30, 30-60 e 60-120 cm.

	Respiração (mg CO ₂ h ⁻¹)			Biomassa Microbiana (μg g ⁻¹ de solo)				
	0 - 30	30 - 60	60 - 120	0 - 30	30 - 60	60 - 120		
Água	0,002± 0,0003 a	$0,003 \pm 0,0003 \ a$	$0,003 \pm 0,0004$ a	$0.06 \pm 0.0079 \ a$	$0.04 \pm 0.0179 \ a$	0,04± 0,0065 a		
ARA	$0,002 \pm 0,0005 \ a$	$0,002 \pm 0,0007 \ a$	$0,003 \pm 0,0003~a$	$0,11\pm 0,0755~a$	$0.04 \pm 0.0119~a$	$0,13\pm0,0892~a$		
Sequeiro	$0,002 \pm 0,0005 \ a$	$0,002 \pm 0,0004 \ a$	$0,002 \pm 0,0003~a$	$0,12\pm0,0744~a$	$0.07 \pm 0.0238~a$	$0,07 \pm 0,033~a$		
Mata	$0,002 \pm 0,0001~a$	$0,002 \pm 0,0001~a$	$0,002 \pm 0,0002~a$	$0.05 \pm 0.0103~a$	$0.01 \pm 0.064~a$	$0,12\pm0,0478~a$		
	Qı	Quociente Metabólico (qCO ₂)			Quociente Microbiano (qMIC)			
	0 - 30	30 - 60	60 - 120	0 - 30	30 - 60	60 - 120		
Água	0,04± 0,0093 a	$0.09 \pm 0.044 \ a$	$0,07 \pm 0,0107 \ a$	1,09± 0,114 a	$0,59\pm0,22~a$	$0,54 \pm 0,1 \ a$		
ARA	$0.02 \pm 0.0154 \ a$	$0.07 \pm 0.024 \ a$	$0.02 \pm 0.0086~a$	$0,25 \pm 0,19 \ b$	$0,51 \pm 0,26 \ a$	$0,37 \pm 0,3 \ a$		
Sequeiro	$0.04\pm0.0199~a$	$0.04\pm0.015~a$	$0.06 \pm 0.0374 \ a$	$0.48 \pm 0.203 \ b$	$0.83 \pm 0.4 \ a$	$1.07 \pm 0.67 \ a$		
Sequeno	$0,04\pm0,0177$ u	$0,04\pm 0,015 u$	0,00= 0,057 T u	0,10=0,2050	0,05-0,7 6	1,07=0,07 u		

Médias seguidas por uma mesma letra não diferem entre si ao nível de 5% pelo teste SNK.

Fonte: Gouvêa, Pereira e Drumond, 2015

EXPERIMENTO 2015 – PATENSE PM

CONCLUSÕES:

- a) Não foi observado efeito nocivo da aplicação de água residuária agroindustrial sobre a atividade microbiana nas diferentes profundidades do solo de pastagem.
- b) A não diferença da atividade microbiana entre áreas (pastagem irrigada com ARA, pastagem irrigada com água, pastagem sequeiro e mata nativa) evidencia que o efluente não tem impacto negativo sobre a microbiota do solo, quando utilizado dentro dos parâmetros estabelecidos neste trabalho.

Fonte: Gouvêa, Pereira e Drumond, 2015

Monitoramento de Elementos Químicos no Solo: Instalação dos extratores.

Extração da solução do solo

Estações de extratores da solução do solo

